【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級(jí)過(guò)濾,每一級(jí)過(guò)濾都由核心部件濾芯來(lái)實(shí)現(xiàn).在使用過(guò)程中,一級(jí)濾芯需要不定期更換,其中每更換個(gè)一級(jí)濾芯就需要更換個(gè)二級(jí)濾芯,三級(jí)濾芯無(wú)需更換.其中一級(jí)濾芯每個(gè)元,二級(jí)濾芯每個(gè)元.記一臺(tái)凈水器在使用期內(nèi)需要更換的二級(jí)濾芯的個(gè)數(shù)構(gòu)成的集合為.如圖是根據(jù)臺(tái)該款凈水器在十年使用期內(nèi)更換的一級(jí)濾芯的個(gè)數(shù)制成的柱狀圖.
(1)結(jié)合圖,寫出集合;
(2)根據(jù)以上信息,求出一臺(tái)凈水器在使用期內(nèi)更換二級(jí)濾芯的費(fèi)用大于元的概率(以臺(tái)凈水器更換二級(jí)濾芯的頻率代替臺(tái)凈水器更換二級(jí)濾芯發(fā)生的概率);
(3)若在購(gòu)買凈水器的同時(shí)購(gòu)買濾芯,則濾芯可享受折優(yōu)惠(使用過(guò)程中如需再購(gòu)買無(wú)優(yōu)惠).假設(shè)上述臺(tái)凈水器在購(gòu)機(jī)的同時(shí),每臺(tái)均購(gòu)買個(gè)一級(jí)濾芯、個(gè)二級(jí)濾芯作為備用濾芯(其中,),計(jì)算這臺(tái)凈水器在使用期內(nèi)購(gòu)買濾芯所需總費(fèi)用的平均數(shù).并以此作為決策依據(jù),如果客戶購(gòu)買凈水器的同時(shí)購(gòu)買備用濾芯的總數(shù)也為個(gè),則其中一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù)應(yīng)分別是多少?
【答案】(1);(2)0.3;(3)見(jiàn)解析.
【解析】
(1)根據(jù)直方圖和一級(jí)濾芯和二級(jí)濾芯之間的關(guān)系,可得答案;
(2)更換二級(jí)濾芯的費(fèi)用大于元,即更換4個(gè)二級(jí)濾芯,轉(zhuǎn)化為更換12個(gè)一級(jí)濾芯,由直方圖得出答案;
(3),,可以分為和兩種情況,分別算出其平均數(shù),得到結(jié)論
(1)由題意可知當(dāng)一級(jí)濾芯更換、、個(gè)時(shí),二級(jí)濾芯需要更換個(gè),
當(dāng)一級(jí)濾芯更換個(gè)時(shí),二級(jí)濾芯需要更換個(gè),所以;
(2)由題意可知二級(jí)濾芯更換個(gè),需元,二級(jí)濾芯更換個(gè),需元,
在臺(tái)凈水器中,二級(jí)濾芯需要更換個(gè)的凈水器共臺(tái),二級(jí)濾芯需要更換個(gè)的凈水器共臺(tái),
設(shè)“一臺(tái)凈水器在使用期內(nèi)更換二級(jí)濾芯的費(fèi)用大于元”為事件,所以;
(3)因?yàn)?/span>,,
(i)若,,
則這臺(tái)凈水器在更換濾芯上所需費(fèi)用的平均數(shù)為
(ii)若,,
則這臺(tái)凈水器在更換濾芯上所需費(fèi)用的平均數(shù)為
所以如果客戶購(gòu)買凈水器的同時(shí)購(gòu)買備用濾芯的總數(shù)為個(gè),
客戶應(yīng)該購(gòu)買一級(jí)濾芯個(gè),二級(jí)濾芯個(gè)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過(guò)P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了了解民眾對(duì)開(kāi)展創(chuàng)建文明城市工作以來(lái)的滿意度,隨機(jī)調(diào)查了40名群眾,并將他們隨機(jī)分成,兩組,每組20人,組群眾給第一階段的創(chuàng)文工作評(píng)分,組群眾給第二階段的創(chuàng)文工作評(píng)分,根據(jù)兩組群眾的評(píng)分繪制了如圖所示的莖葉圖.
(Ⅰ)根據(jù)莖葉圖比較群眾對(duì)兩個(gè)階段的創(chuàng)文工作滿意度評(píng)分的平均值和集中程度(不要求計(jì)算出具體值,給出結(jié)論即可);
(Ⅱ)完成下面的列聯(lián)表,并通過(guò)計(jì)算判斷是否有的把握認(rèn)為民眾對(duì)兩個(gè)階段創(chuàng)文工作的滿意度存在差異?
低于70分 | 不低于70分 | 合計(jì) | |
第一階段 | |||
第二階段 | |||
合計(jì) |
參考公式:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若,是否存在整數(shù)使對(duì)任意成立?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,為邊的中點(diǎn),沿將折起,點(diǎn)折至處(平面),若為線段的中點(diǎn),則在折起過(guò)程中,下列說(shuō)法錯(cuò)誤的是( )
A.始終有平面
B.不存在某個(gè)位置,使得面
C.點(diǎn)在某個(gè)球面上運(yùn)動(dòng)
D.一定存在某個(gè)位置,使得異面直線與所成角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題恒成立;命題方程表示雙曲線.
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前,以“立德樹(shù)人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對(duì)初三畢業(yè)學(xué)生進(jìn)行體育測(cè)試,是激發(fā)學(xué)生、家長(zhǎng)和學(xué)校積極開(kāi)展體育活動(dòng),保證學(xué)生健康成長(zhǎng)的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測(cè)試,三項(xiàng)考試滿分50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開(kāi)始時(shí)要掌握全年級(jí)學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,得到下邊頻率分布直方圖,且規(guī)定計(jì)分規(guī)則如下表:
每分鐘跳繩個(gè)數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學(xué)生中,任意選取2人,求兩人得分之和不大于35分的概率;;
(Ⅱ)若該校初三年級(jí)所有學(xué)生的跳繩個(gè)數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計(jì)總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點(diǎn)值代替).根據(jù)往年經(jīng)驗(yàn),該校初三年級(jí)學(xué)生經(jīng)過(guò)一年的訓(xùn)練,正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)都有明顯進(jìn)步,假設(shè)今年正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)比初三上學(xué)期開(kāi)始時(shí)個(gè)數(shù)增加10個(gè),現(xiàn)利用所得正態(tài)分布模型:
預(yù)計(jì)全年級(jí)恰有2000名學(xué)生,正式測(cè)試每分鐘跳182個(gè)以上的人數(shù);(結(jié)果四舍五入到整數(shù))
若在全年級(jí)所有學(xué)生中任意選取3人,記正式測(cè)試時(shí)每分鐘跳195以上的人數(shù)為ξ,求隨機(jī)變量的分布列和期望.
附:若隨機(jī)變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比稱為“直線關(guān)于圓的距離比”.
(1)設(shè)圓求過(guò)點(diǎn)P的直線關(guān)于圓的距離比的直線方程;
(2)若圓與軸相切于點(diǎn)A且直線關(guān)于圓C的距離比求出圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,直線()與橢圓交于,兩點(diǎn)(點(diǎn)在軸的上方).
(1)若,求的面積;
(2)是否存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com