【題目】西光廠眼鏡車(chē)間接到一批任務(wù),需要加工6000個(gè)型零件和2000個(gè)型零件.這個(gè)車(chē)間有214名工人,他們每一個(gè)人加工5個(gè)型零件的時(shí)間可以加工3個(gè)型零件.將這些工人分成兩組,兩組同時(shí)工作,每組加工一種型號(hào)的零件,為了在最短的時(shí)間內(nèi)完成這批任務(wù),應(yīng)怎樣分組?

【答案】加工型零件組的人數(shù)是137,另一組人數(shù)為77.

【解析】

解:設(shè)加工型零件的一組人數(shù)為,在單位時(shí)間里一個(gè)工人加工型零件數(shù)為,則另一組的人數(shù)為,在單位時(shí)間里一個(gè)人加工型零件數(shù)為.

加工型零件所需時(shí)間為;

加工型零件所需時(shí)間為.

∴完成整個(gè)任務(wù)的時(shí)間為

,其中,.

這樣,問(wèn)題轉(zhuǎn)化為求自然數(shù),使得函數(shù)取最小值.

在區(qū)間上,為減函數(shù),為增函數(shù),故的最小值在取到,其中滿足方程.

不是整數(shù),而,

∴加工型零件組的人數(shù)是137,另一組人數(shù)為77.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為4的正三角形,,底面,點(diǎn)分別為,的中點(diǎn).

(1)求證:平面平面

(2)在線段上是否存在點(diǎn),使得直線與平面所成的角的正弦值為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,平面底面.分別是的中點(diǎn),求證:

(Ⅰ)底面

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右頂點(diǎn)分別為,左焦點(diǎn)為,已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若過(guò)點(diǎn)的直線與該橢圓交于兩點(diǎn),且線段的中點(diǎn)恰為點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,底面, 的中點(diǎn).

(1)求證:;

(2)求點(diǎn)D與平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量2sinx,cosx),cosx,2cosx).

1)若xkπ,kZ,且,求2sin2xcos2x的值;

2)定義函數(shù)fx,求函數(shù)fx)的單調(diào)遞減區(qū)間;并求當(dāng)x[0,]時(shí),函數(shù)fx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中在校學(xué)生2000為了響應(yīng)“陽(yáng)光體育運(yùn)動(dòng)”號(hào)召,學(xué)校舉行了跑步和登山比賽活動(dòng)每人都參加而且只參與了其中一項(xiàng)比賽,各年級(jí)參與比賽人數(shù)情況如表:

高一年級(jí)

高二年級(jí)

高三年級(jí)

跑步

a

b

c

登山

x

y

z

其中ab35,全校參與登山的人數(shù)占總?cè)藬?shù)的,為了了解學(xué)生對(duì)本次活動(dòng)的滿意程度,現(xiàn)用分層抽樣方式從中抽取一個(gè)100個(gè)人的樣本進(jìn)行調(diào)查,則高二年級(jí)參與跑步的學(xué)生中應(yīng)抽取  

A. 6B. 12C. 18D. 24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).

1)求曲線處的切線方程;

2)設(shè),求函數(shù)的單調(diào)區(qū)間;

3)設(shè),求證:當(dāng)時(shí),函數(shù)恰有2個(gè)不同零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表1所示.

1

積極參加班級(jí)工作

不積極參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性高

17

8

25

學(xué)習(xí)積極性一般

5

20

25

合計(jì)

22

28

50

(1)如果隨機(jī)從該班抽查一名學(xué)生,抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?并說(shuō)明理由.

參考表2

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.706

0.05

0.010

0.005

0.001

3.841

6.635

7.879

10.8

查看答案和解析>>

同步練習(xí)冊(cè)答案