【題目】【2017湖南婁底二!如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長為2的正三角形, , .
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)是棱上的點,當(dāng)平面時,求二面角的余弦值.
【答案】(Ⅰ)見解析; (Ⅱ).
【解析】試題分析:(Ⅰ)要證平面平面,只需證平面即可.
(Ⅱ)分別以、、所在直線為軸、軸、軸建立空間直角坐標(biāo)系如圖,求平面的一個法向量和平面的一個法向量求解即可.
試題解析:
(Ⅰ)取的中點,連接, ,
因為是邊長為2的正三角形,所以, ,①
又,所以,且,
于是,從而,②
由①②得平面,而平面,所以平面平面.
(Ⅱ)連結(jié),設(shè),則為的中點,連結(jié),當(dāng)平面時, ,所以是的中點.
由(Ⅰ)知, 、、兩兩垂直,分別以、、所在直線為軸、軸、軸建立空間直角坐標(biāo)系如圖,則、、、,
由、坐標(biāo)得,從而, ,
設(shè)是平面的一個法向量,則由得,
取,得,易知平面的一個法向量是,
所以 ,
由圖可知,二面角的平面角為鈍角,故所求余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的身體狀況,某校隨機(jī)抽取了一批學(xué)生測量體重.經(jīng)統(tǒng)計,這批學(xué)生的體重數(shù)據(jù)(單位:千克)全部介于45至70之間.將數(shù)據(jù)分成以下5組:第1組[45,50),第2組[50,55),第3組[55,60),第4組[60,65),第5組[65,70],得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第3,4,5組中隨機(jī)抽取6名學(xué)生做初檢.
(1)求每組抽取的學(xué)生人數(shù);
(2)若從6名學(xué)生中再次隨機(jī)抽取2名學(xué)生進(jìn)行復(fù)檢,求這2名學(xué)生不在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是容量為100的樣本的頻率分布直方圖,則樣本數(shù)據(jù)在[6,10)內(nèi)的頻率和頻數(shù)分別是( )
A.0.32,32
B.0.08,8
C.0.24,24
D.0.36,36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校1200名高三年級學(xué)生參加了一次數(shù)學(xué)測驗(滿分為100分),為了分析這次數(shù)學(xué)測驗的成績,從這1200人的數(shù)學(xué)成績中隨機(jī)抽出200人的成績繪制成如下的統(tǒng)計表,請根據(jù)表中提供的信息解決下列問題;
(1)求a、b、c的值;
(2)如果從這1200名學(xué)生中隨機(jī)取一人,試估計這名學(xué)生該次數(shù)學(xué)測驗及格的概率p(注:60分及60分以上為及格);
(3)試估計這次數(shù)學(xué)測驗的年級平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017四川瀘州四診】如圖,平面平面,四邊形是菱形, .
(1)求證: ;
(2)若,且直線與平面所成角為,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三文科分為五個班.高三數(shù)學(xué)測試后,隨機(jī)地在各班抽取部分學(xué)生進(jìn)行成績統(tǒng)計,各班被抽取的學(xué)生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了18人.抽取出來的所有學(xué)生的測試成績統(tǒng)計結(jié)果的頻率分布條形圖如圖所示,其中120~130(包括120分但不包括130分)的頻率為0.05,此分?jǐn)?shù)段的人數(shù)為5人.
(1)問各班被抽取的學(xué)生人數(shù)各為多少人?
(2)在抽取的所有學(xué)生中,任取一名學(xué)生,求分?jǐn)?shù)不小于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是否存在過點(﹣5,﹣4)的直線l,使它與兩坐標(biāo)軸圍成的三角形的面積為5?若存在,求出直線l的方程(化成直線方程的一般式);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系中,直線的方程為: ,直線的方程為.
(Ⅰ)寫出曲線的直角坐標(biāo)方程,并指出它是何種曲線;
(Ⅱ)設(shè)與曲線交于兩點, 與曲線交于兩點,求四邊形面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com