【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,∠DAB=60°.
(1)求證:直線AM∥平面PNC;
(2)求二面角D﹣PC﹣N的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)在上取一點(diǎn),使,連接, ,可得, , 為平行四邊形,即,即可得直線平面.
(2)取中點(diǎn),可得, , 相互垂直,以為原點(diǎn),如圖建立空間直角坐標(biāo)系,易知平面的法向量,求出面的法向量,計(jì)算出兩向量夾角即可.
試題解析:(1)在上取一點(diǎn),使,連接, ,
∵, ,∴, , , ∴, ,∴為平行四邊形,即,又平面,∴直線平面.
(2)取中點(diǎn),底面是菱形, ,∴,∵,∴,即,又平面,∴,又,∴直線平面,故, , 相互垂直,以為原點(diǎn),如圖建立空間直角坐標(biāo)系.
則, , , , , ,易知平面的法向量,設(shè)面的法向量,由,得,∴,故二面角的余弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|3x-1|-2|x|+2.
(Ⅰ)解不等式:f(x)<10;
(Ⅱ)若對(duì)任意的實(shí)數(shù)x,f(x)-|x|≤a恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線.
(1)求曲線在點(diǎn)P(2,4)處的切線方程;
(2)求曲線過點(diǎn)P(2,4)的切線方程;
(3)求斜率為1的曲線的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856290)[選修4-5:不等式選講]
已知函數(shù)f(x)=|x-a|+|x-2a|.
(Ⅰ)對(duì)任意x∈R,不等式f(x)>1成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=-1時(shí),解不等式f(x)<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=emx+x2-mx.
(1)證明:f(x)在(-∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增;
(2)若對(duì)于任意x1,x2∈[-1,1],都有,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種產(chǎn)品按質(zhì)量標(biāo)準(zhǔn)分為,,,,五個(gè)等級(jí).現(xiàn)從一批該產(chǎn)品隨機(jī)抽取20個(gè),對(duì)其等級(jí)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:
等級(jí) | |||||
頻率 |
(1)在抽取的20個(gè)產(chǎn)品中,等級(jí)為5的恰有2個(gè),求,;
(2)在(1)的條件下,從等級(jí)為3和5的所有產(chǎn)品中,任意抽取2個(gè),求抽取的2個(gè)產(chǎn)品等級(jí)恰好相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856301)已知函數(shù)f(x)=m(x-1)ex+x2(m∈R),其導(dǎo)函數(shù)為f′(x),若對(duì)任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,則實(shí)數(shù)m的取值范圍為( )
A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方體ABCD-A′B′C′D′的外接球的體積為π,將正方體割去部分后,剩余幾何體的三視圖如圖所示,則剩余幾何體的表面積為( )
A. + B. 3+或+ C. 3+ D. +或2+
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com