【題目】中, , 中點(如圖1).將沿折起到圖2中的位置,得到四棱錐.

(1)將沿折起的過程中, 平面是否成立?并證明你的結(jié)論;

(2)若,過的平面交于點,且的中點,求三棱錐的體積.

【答案】(1)見解析;(2).

【解析】試題分析:(1)將沿折起過程中, 平面成立。原因是:在中,由余弦定理求出,滿足勾股定理,所以為等腰直角三角形且,又, ,所以平面成立;(2)求出三棱錐的高,算出的面積,由三棱錐體積公式求出三棱錐的體積.

試題解析:(1)將沿折起過程中, 平面成立,

證明:∵中點,∴

中,由余弦定理得,

.

,

,

為等腰直角三角形且,

,

平面.

(2)因為,

為等邊三角形,

中點,連結(jié),則,

由(1)知平面, 平面,

∴平面平面,

平面

∴三棱錐的高.

中點,∴, .

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

1)若曲線處的切線方程為,求實數(shù)的值;

2)設(shè),若對任意兩個不等的正數(shù)都有恒成立,求實數(shù)的取值范圍;

3)若在上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下三個關(guān)于圓錐曲線的命題中:

①設(shè)為兩個定點,為非零常數(shù),若,則動點的軌跡是雙曲線;

②方程的兩根可分別作為橢圓和雙曲線的離心率;

③雙曲線與橢圓有相同的焦點;

④已知拋物線,以過焦點的一條弦為直徑作圓,則此圓與準(zhǔn)線相切,其中真命題為__________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為, 上的動點到兩焦點的距離之和為4,當(dāng)點運動到橢圓的上頂點時,直線恰與以原點為圓心,以橢圓的離心率為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左右頂點分別為,若交直線兩點.問以為直徑的圓是否過定點?若過定點,請求出該定點坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).

(1)寫出曲線的極坐標(biāo)方程,并求交點的極坐標(biāo);

(2)射線與曲線分別交于點異于原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,過拋物線上一定點,作兩條直線分別交拋物線于

(1)求該拋物線上縱坐標(biāo)為的點到其焦點的距離;

(2)當(dāng)的斜率存在且傾斜角互補時,求的值,并證明直線的斜率是非零常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).

(1)寫出曲線的極坐標(biāo)方程,并求交點的極坐標(biāo);

(2)射線與曲線分別交于點異于原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知由自然數(shù)組成的元集合,非空集合,且對任意的,都有.

(1)當(dāng)時,求所有滿足條件的集合;

(2)當(dāng)時,求所有滿足條件的集合的元素總和;

(3)定義一個集合的交替和如下:按照遞減的次序重新排列該集合的元素,然后從最大數(shù)開始交替地減、加后繼的數(shù).例如集合的交替和是,集合的交替和為.當(dāng)時,求所有滿足條件的集合交替和的總和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),記的解集為

(1)求集合(用區(qū)間表示);

(2)當(dāng)時,求函數(shù)的最小值;

(3)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案