分析 (1)由可推知f(-x)=f(x),從而可判斷函數(shù)f(x)的奇偶性;
(2)利用(1)知f(x)為偶函數(shù),可知當(dāng)x∈(0,+∞)時(shí),x3>0,從而可判知,要使f(x)+f(2x)>0在其定義域上恒成立,只需當(dāng)a>1時(shí)即可.
解答 解:(1)定義域?yàn)椋?∞,0)∪(0,+∞),
∵f(-x)=($\frac{1}{{a}^{-x}-1}$+$\frac{1}{2}$)(-x)3=-($\frac{{a}^{x}}{1-{a}^{2}}$+$\frac{1}{2}$)x3=($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$)=f(x)
∴f(x)是偶函數(shù).
(2)∵函數(shù)f(x)在定義域上是偶函數(shù),
∴函數(shù)y=f(2x)在定義域上也是偶函數(shù),
∴當(dāng)x∈(0,+∞)時(shí),f(x)+f(2x)>0可滿足題意,
∵當(dāng)x∈(0,+∞)時(shí),x3>0,
∴只需$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$+$\frac{1}{({a}^{x})^{2}-1}$+$\frac{1}{2}$>0,即$\frac{{a}^{2x}+{a}^{x}+1}{{a}^{2x}-1}$>0,
∵a2x+ax+1>0,
∴(ax)2-1>0,解得a>1,
∴當(dāng)a>1時(shí),f(x)+f(2x)>0在定義域上恒成立.
點(diǎn)評(píng) 本題考查函數(shù)恒成立問(wèn)題,考查函數(shù)單調(diào)性的判斷與證明,考查函數(shù)奇偶性的運(yùn)用,突出轉(zhuǎn)化思想與分析法的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x-[x]≥0 | |
B. | x-[x]<1 | |
C. | 令f(x)=x-[x],對(duì)任意實(shí)數(shù)x,f(x+1)=f(x)恒成立 | |
D. | 令f(x)=x-[x],對(duì)任意實(shí)數(shù)x,f(-x)=f(x)恒成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=x${\;}^{\frac{1}{3}}$ | B. | f(x)=sinx | C. | f(x)=cosx | D. | f(x)=log2(x2+1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com