【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長為2的正三角形,頂點(diǎn)在上的射影為點(diǎn),且, , .
(1)證明:平面平面;
(2)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1) 取的中點(diǎn)為,連接利用直角三角形的性質(zhì),可分別求出的值,由勾股定理得.可得面,可證平面平面;(2)以所在直線為軸, 所在直線為軸,過點(diǎn)作平面的垂線為軸,建立空間直角坐標(biāo)系,寫出各點(diǎn)坐標(biāo),求出兩個(gè)半平面的法向量,利用法向量的夾角與二面角的夾角的關(guān)系,可求二面角的余弦值.
試題解析:(Ⅰ)證明:由頂點(diǎn)在上投影為點(diǎn),可知, .
取的中點(diǎn)為,連結(jié), .
在中, , ,所以.
在中, , ,所以.
所以, ,即.
∵
∴面.
又面,所以面面.
(Ⅱ)由(Ⅰ)知, , ,且
所以 面,且面.以所在直線為軸, 所在直線為軸,過點(diǎn)作平面的垂線為軸,建立空間直角坐標(biāo)系,如圖所示:
, , ,
設(shè)平面, 的法向量分別為,則
,則,
,則
,
,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若曲線與曲線在它們的交點(diǎn)處具有公共切線,求a,b的值;
(2)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(3),求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)f(x)=-bx+lnx(a,b∈R).
(Ⅰ)若a=b=1,求f(x)點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)設(shè)a<0,求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)a<0,且對(duì)任意的x>0,f(x)≤f(2),試比較ln(-a)與-2b的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的甲區(qū)、乙區(qū)分別對(duì)6個(gè)企業(yè)進(jìn)行評(píng)估,綜合得分情況如莖葉圖所示.
(1)根據(jù)莖葉圖,分別求甲、乙兩區(qū)引進(jìn)企業(yè)得分的平均值;
(2)規(guī)定85分以上(含85分)為優(yōu)秀企業(yè),若從甲、乙兩個(gè)區(qū)準(zhǔn)備引進(jìn)的優(yōu)秀企業(yè)中各隨機(jī)選取一個(gè),求這兩個(gè)企業(yè)得分的差的絕對(duì)值不超過5分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了改善居民的休閑娛樂活動(dòng)場所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路、和,要求點(diǎn)是的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊時(shí)上,且.
(1)設(shè),試求的周長關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①命題“,有”的否定為:“”;
②已知向量與的夾角是鈍角,則實(shí)數(shù)k的取值范圍是;
③函數(shù)的單調(diào)遞增區(qū)間是;
④“”是“直線和直線平行”的充分不必要條件;
其中錯(cuò)誤命題的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱,則( )
A.函數(shù)為奇函數(shù)
B.函數(shù)在上單調(diào)遞增
C.若,則的最小值為
D.函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱柱的底面邊長為2,側(cè)棱,為上底面上的動(dòng)點(diǎn),給出下列四個(gè)結(jié)論中正確結(jié)論為( )
A.若,則滿足條件的點(diǎn)有且只有一個(gè)
B.若,則點(diǎn)的軌跡是一段圓弧
C.若∥平面,則長的最小值為2
D.若∥平面,且,則平面截正四棱柱的外接球所得平面圖形的面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A4紙是生活中最常用的紙規(guī)格.A系列的紙張規(guī)格特色在于:①A0、A1、A2…、A5,所有尺寸的紙張長寬比都相同.②在A系列紙中,前一個(gè)序號(hào)的紙張以兩條長邊中點(diǎn)連線為折線對(duì)折裁剪分開后,可以得到兩張后面序號(hào)大小的紙,比如1張A0紙對(duì)裁后可以得到2張A1紙,1張A1紙對(duì)裁可以得到2張A2紙,依此類推.這是因?yàn)?/span>A系列紙張的長寬比為:1這一特殊比例,所以具備這種特性.已知A0紙規(guī)格為84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4紙的長度為( 。
A.厘米B.厘米C.厘米D.厘米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com