精英家教網 > 高中數學 > 題目詳情

【題目】下列說法錯誤的是( )

A. 在回歸模型中,預報變量的值不能由解釋變量唯一確定

B. 若變量滿足關系,且變量正相關,則也正相關

C. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D. 以模型去擬合一組數據時,為了求出回歸方程,設,將其變換后得到線性方程,則,

【答案】B

【解析】

對4個命題分別進行判斷,即可得出結論.

對于A,y除了受自變量x的影響之外還受其他因素的影響,故A正確;

對于B, 變量,滿足關系,則變量x與負相關,又變量正相關,則負相關,故B錯誤;

對于C,由殘差圖的意義可知正確;

對于D,∵ycekx,

∴兩邊取對數,可得lnylncekx)=lnc+lnekxlnc+kx,

zlny,可得zlnc+kx,

z=0.3x+4,

lnc=4,k=0.3,∴ce4.即D正確;

故選B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列說法中正確的是( )

A.若事件與事件是互斥事件,則

B.若事件與事件是對立事件:則

C.某人打靶時連續(xù)射擊三次,則事件“至少兩次中靶”與事件“至多有一次中靶”是對立事件

D.把紅橙黃3張紙牌隨機分給甲乙丙3人,每人分得1張,則事件“甲分得的不是紅牌”與事件“乙分得的不是紅牌”是互斥事件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】德國數學家科拉茨1937年提出一個著名的猜想:任給一個正整數,如果是偶數,就將它減半(即);如果是奇數,則將它乘3加1(即),不斷重復這樣的運算,經過有限步后,一定可以得到1.對于科拉茨猜想,目前誰也不能證明,也不能否定.現(xiàn)在請你研究:如果對正整數(首項)按照上述規(guī)則進行變換后的第9項為1(注:1可以多次出現(xiàn)),則的所有不同值的個數為( )

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若的極值點,求的值;

(2)當時,方程有實數根,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求函數的極值;

(2)當時,若對任意都有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調查患胃病是否與生活不規(guī)律有關,在患胃病與生活不規(guī)律這兩個分類變量的計算中,下列說法正確的是(

A. 越大,患胃病與生活不規(guī)律沒有關系的可信程度越大.

B. 越大,患胃病與生活不規(guī)律有關系的可信程度越小.

C.若計算得 ,經查臨界值表知 ,則在 個生活不規(guī)律的人中必有 人患胃病.

D.從統(tǒng)計量中得知有 的把握認為患胃病與生活不規(guī)律有關,是指有 的可能性使得推斷出現(xiàn)錯誤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列四個命題:

①映射不一定是函數,但函數一定是其定義域到值域的映射;

②函數的反函數是,則;

③函數上遞減,則的范圍為;

④若a是第一象限的角,則也是第一象限的角.

其中所有正確命題的序號是

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】斜率為的直線與拋物線交于兩點,且的中點恰好在直線上.

(1)求的值;

(2)直線與圓交于兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知以點CtRt0)為圓心的圓與x軸交于點O和點A,與y軸交于點O和點B,其中O為原點.

1)求證:OAB的面積為定值;

2)設直線y=-2x4與圓C交于點M,N,若OMON,求圓C的方程.

查看答案和解析>>

同步練習冊答案