精英家教網 > 高中數學 > 題目詳情

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB, PC的中點

(1)求證:EF∥平面PAD;

(2)求證:EF⊥CD;    

(3)若ÐPDA=45°,求EF與平面ABCD所成的角的大。

 

【答案】

(1)∵ABCD是矩形,取PB的中點為G,連GF,GE,證得平面GEF//平面PAD,EF∥平面PAD。(2)證明△PAE≌△CBE,得出EF⊥PC。又CD⊥GE證得CD⊥平面GEF,推出EF⊥CD。

(3)EF與面ABCD所成的角為45°。

【解析】

試題分析:(1)∵ABCD是矩形,取PB的中點為G,連GF,GE,由三角形中位線定理,知GF//BC//AD,GE//PA,又GE與GF交于G,PA與AD交于A,所以平面GEF//平面PAD,EF∥平面PAD。

(2)∵ABCD是矩形,∴CB=AD、∠CBE=90°、BC⊥CD。

∵PA⊥平面ABCD,∴∠PAE=90°。

∵PA=AD、CB=AD,∴PA=CB,又AE=BE、∠PAE=∠CBE=90°,∴△PAE≌△CBE,

∴CE=PE,而F∈PC且PF=CF,∴EF⊥PC。

∵G、F分別是PB、PC的中點,∴GF是△PBC的中位線,∴GF∥BC,而BC⊥CD,

∴CD⊥GF。

∵G、E分別是PB、AB的中點,∴GE是△BPA的中位線,∴GE∥PA,而PA⊥平面ABCD,

∴GE⊥平面ABCD,∴CD⊥GE。

由CD⊥GF、CD⊥GE、GF∩GF=G,∴CD⊥平面GEF,∴EF⊥CD。

(3)過F作FO⊥AC交AC于O。

∵PA⊥面ABCD,∴PA⊥AC,PA⊥EO,得:FO∥PA,FO⊥EO,AO=CO。

由PF=CF,FO∥PA,得:FO=PA。

由AE=BE,AO=CO,得:EO=BC。

由PA⊥面ABCD,FO∥PA,得:FO⊥面ABCD,∴∠FEO就是EF與面ABCD所成的角。

∵PA⊥面ABCD,∴PA⊥AD,又∠PDA=45°,∴PA=AD,結合證得的FO=PA,

得:FO=AD。

∵ABCD是矩形,∴AD=BC,結合證得的EO=BC,得:EO= AD。

由FO=AD,EO=AD,FO⊥EO,得:∠FEO=45°。

即:EF與面ABCD所成的角為45°。

考點:本題主要考查立體幾何中的平行關系、垂直關系,角的計算。

點評:中檔題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。

 

練習冊系列答案
相關習題

科目:高中數學 來源:名師指點學高中課程 數學 高二(下) 題型:044

如圖,已知在矩形ABCD中,AB=3,BC=4,沿對角線AC將△ABC折起,使B點在平面ADC內的射影恰好落在AD上,求:

(1)異面直線AB與CD成的角;

(2)異面直線AB與CD的距離;

(3)二面角B-AC-D的大。

查看答案和解析>>

科目:高中數學 來源:2014屆安徽省高一下學期期中考試數學試卷(解析版) 題型:解答題

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB、

PC的中點.

(1)求證:EF∥平面PAD;

(2)求證:EF⊥CD;

(3)若ÐPDA=45°求EF與平面ABCD所成的角的大小.

【解析】本試題主要考查了線面平行和線線垂直的運用,以及線面角的求解的綜合運用

第一問中,利用連AC,設AC中點為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點   ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二問中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO為EF在平面AC內的射影       ∴ CD⊥EF.

第三問中,若ÐPDA=45°,則 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

證:連AC,設AC中點為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點∴ FO∥PA …………①    在△ABC中,∵ E、O分別為AB、AC的中點  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO為EF在平面AC內的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,則 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省南京市高三第二次模擬考試數學卷 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10,共計20分。請在答題卡指定區(qū)域作答。解答應寫出文字說明、證明過程或演算步驟。

A、選修4-1:幾何證明選講

   如圖,已知梯形ABCD為圓內接四邊形,AD//BC,過C作該圓的切線,交AD的延長線于E,求證:ΔABC∽ΔEDC。

B、選修4-2:矩形與變換

已知 為矩陣屬于λ的一個特征向量,求實數a,λ的值及A2。

C、選修4-4:坐標系與參數方程

   在平面直角坐標系xoy中,曲線C的參數方程為(α為參數),曲線D的參數方程為,(t為參數)。若曲線C、D有公共點,求實數m的取值范圍。

D、選修4-5:不等式選講

   已知a,b都是正實數,且ab=2。求證:(1+2a)(1+b)≥9。

 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知幾何體ABC-DEF中,△ABC及△DEF都是邊長為2的等邊三角形,四邊形ABEF為矩形,且CD=AF+2,CD//AF,O為AB中點.

(1)求證:AB⊥平面DCO

(2)若M為CD中點,AF=x,則當x取何值時,使AM與平面ABEF所成角為45°?

試求相應的x值的.

(3)求該幾何體在(2)的條件下的體積.

查看答案和解析>>

科目:高中數學 來源:2011屆江蘇省南京市高三第二次模擬考試數學卷 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10,共計20分。請在答題卡指定區(qū)域作答。解答應寫出文字說明、證明過程或演算步驟。
A、選修4-1:幾何證明選講
如圖,已知梯形ABCD為圓內接四邊形,AD//BC,過C作該圓的切線,交AD的延長線于E,求證:ΔABC∽ΔEDC。

B、選修4-2:矩形與變換
已知為矩陣屬于λ的一個特征向量,求實數a,λ的值及A2。
C、選修4-4:坐標系與參數方程
在平面直角坐標系xoy中,曲線C的參數方程為(α為參數),曲線D的參數方程為,(t為參數)。若曲線C、D有公共點,求實數m的取值范圍。
D、選修4-5:不等式選講
已知a,b都是正實數,且ab=2。求證:(1+2a)(1+b)≥9。

查看答案和解析>>

同步練習冊答案