在平面直角坐標(biāo)系中,已知點(diǎn)A(1,2),B(3,4),C(5,0).
求:(Ⅰ) |
AB
|,|
AC
|
;
(Ⅱ) 
AB
AC
,COS<
AB
,
AC
>.
分析:(Ⅰ) 求出
AB
AC
的坐標(biāo),利用向量的模的定義可求得|
AB
|,|
AC
|
 的值.
(Ⅱ) 求出
AB
AC
=4,根據(jù)cos<
AB
,
AC
> =
AB
AC
|
AB
|•|
AC
|
,求出COS<
AB
,
AC
>的值.
解答:解:(Ⅰ)∵
AB
=(3-1,4-2)=(2,2),
AC
=(5-1,0-2)=(4,-2),
|
AB
|=
22+22
=
8
=2
2
,
|
AC
|=
42+(-2)2
=
20
=2
5

(Ⅱ) 易知
AB
AC
=(2,2)•(4,-2)=4,
故cos<
AB
,
AC
>=cos∠BAC=
AB
AC
|
AB
||
AC
|
=
10
10
點(diǎn)評:本題考查兩個(gè)向量的數(shù)量積的定義,兩個(gè)向量坐標(biāo)形式的運(yùn)算,兩個(gè)向量夾角公式的應(yīng)用,求出
AB
AC
的坐標(biāo)
是解題的突破口.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
③直線l經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過無窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊答案