【題目】某企業(yè)打算在四個(gè)候選城市投資四個(gè)不同的項(xiàng)目,規(guī)定在同一個(gè)城市投資的項(xiàng)目不超過(guò)兩個(gè),則該企業(yè)不同的投資方案有(
A.204種
B.96種
C.240種
D.384種

【答案】C
【解析】解:根據(jù)題意,要在4個(gè)候選城市投資4個(gè)不同的項(xiàng)目,且在同一個(gè)城市投資的項(xiàng)目不超過(guò)2個(gè),
則分3種情況討論,
每個(gè)城市恰有一個(gè)項(xiàng)目:A44=24.
有一個(gè)城市兩個(gè)項(xiàng)目,另兩個(gè)城市1個(gè)項(xiàng)目:C41C32A42=144.
恰有兩個(gè)城市,每個(gè)城市2個(gè)項(xiàng)目:C42A42=72
共24+144+72=240種,
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是 R上的增函數(shù),A(0,﹣1),B(3,1)是其圖像上的兩點(diǎn),那么|f(x)|<1的解集是(
A.(﹣3,0)
B.(0,3)
C.(﹣∞,﹣1]∪[3,+∞)
D.(﹣∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)y=log4(x2﹣2x+5)有以下4個(gè)結(jié)論:其中正確的有 ①定義域?yàn)镽; ②遞增區(qū)間為[1,+∞);
③最小值為1; ④圖像恒在x軸的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】錢大姐常說(shuō)“便宜沒(méi)好貨”,她這句話的意思是:“不便宜”是“好貨”的(
A.充分條件
B.必要條件
C.充分必要條件
D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)區(qū)間I上有定義的函數(shù)g(x),記g(I)={y|y=g(x),x∈I}.已知定義域?yàn)閇0,3]的函數(shù)y=f(x)有反函數(shù)y=f1(x),且f1([0,1))=[1,2),f1((2,4])=[0,1).若方程f(x)﹣x=0有解x0 , 則x0=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)绾瘮?shù)f(x)=(m2﹣m﹣5)xm+1在(0,+∞)上單調(diào)遞減,則m等于(
A.3
B.﹣2
C.﹣2或3
D.﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用反證法證明命題“若a+b+c≥0,abc≤0,則a、b、c三個(gè)實(shí)數(shù)中最多有一個(gè)小于零”的反設(shè)內(nèi)容為(
A.a、b、c三個(gè)實(shí)數(shù)中最多有一個(gè)不大于零
B.a、b、c三個(gè)實(shí)數(shù)中最多有兩個(gè)小于零
C.a、b、c三個(gè)實(shí)數(shù)中至少有兩個(gè)小于零
D.a、b、c三個(gè)實(shí)數(shù)中至少有一個(gè)不大于零

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列x,3x+3,6x+6,…的第四項(xiàng)等于(
A.﹣24
B.0
C.12
D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+4)=f(x),則f(99)等于(
A.﹣1
B.0
C.1
D.99

查看答案和解析>>

同步練習(xí)冊(cè)答案