直線l:y=kx+1與雙曲線C:3x2-y2=1相交于不同的A,B兩點.
(1)求AB的長度;
(2)是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過坐標原點?若存在,求出k的值,若不存在,寫出理由.
聯(lián)立方程組
y=kx+1
3x2-y2=1
,消去y得(3-k2)x2-2kx-2=0,
∵直線與雙曲線有兩個交點,
3-k2≠0
△=4k2+8(3-k2)>0
,解得k2<6且k2≠3,
x1+x2=
2k
3-k2
,x1x2=
-2
3-k2

(1)|AB|=
1+k2
|x1-x2|=
1+k2
(x1+x2)2-4x1x2

=
1+k2
(
2k
3-k2
)2-4•
-2
3-k2

=
2
-k4+5k2+6
|k2-3|
(k2<6且k2≠3).
(2)假設(shè)存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過坐標原點,
則kOA•kOB=-1,即x1x2+y1y2=0,
∴x1x2+(kx1+1)(kx2+1)=0,
即(k+1)x1x2+k(x1+x2)+1=0,
(k+1)•
-2
3-k2
+k•
2k
3-k2
+1=0

整理得k2=1,符合條件,
∴k=±1.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

直線y=x+m與曲線y=
1-2x2
有兩個交點,則實數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,以
3
2
為離心率的橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點分別為A和B,點P是橢圓位于x軸上方的一點,且△PAB的面積最大值為2.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)點Q是橢圓位于x軸下方的一點,直線AP、BQ的斜率分別為k1,k2,若k1=7k2,設(shè)△BPQ與△APQ的面積分別為S1,S2,求S1-S2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓C:x2+
y2
a2
=1(a>1)
的離心率為e,點F為其下焦點,點O為坐標原點,過F的直線l:y=mx-c(其中c=
a2-1
)與橢圓C相交于P,Q兩點,且滿足:
OP
OQ
=
a2(c2-m2)-1
2-c2

(Ⅰ)試用a表示m2
(Ⅱ)求e的最大值;
(Ⅲ)若e∈(
1
3
1
2
)
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,過點F2與x軸不垂直的直線l交橢圓于A、B兩點,則△ABF1的周長為4
2

(1)求橢圓的方程;
(2)若C(
1
3
,0),使得|AC|=|BC|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦點分別為F1、F2,過F1作直線交橢圓于P、Q兩點,△F2PQ的周長為4
3

(1)若橢圓的離心率e=
3
3
,求橢圓的方程;
(2)若M為橢圓上一點,
MF1
MF2
=1,求△MF1F2的面積最大時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的焦點在x軸上,O為坐標原點,F(xiàn)是一個焦點,A是一個頂點.若橢圓的長軸長是6,且cos∠OFA=
2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)求點R(0,1)與橢圓C上的點N之間的最大距離;
(Ⅲ)設(shè)Q是橢圓C上的一點,過Q的直線l交x軸于點P(-3,0),交y軸于點M.若
MQ
=2
QP
,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C的頂點為O(0,0),焦點F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過F作直線交拋物線于A、B兩點.若直線OA、OB分別交直線l:y=x-2于M、N兩點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率e=
5
5
,過F1的直線交橢圓于M、N兩點,且△MNF2周長為4
5

(Ⅰ)求橢圓E的方程;
(Ⅱ)已知過橢圓中心,且斜率為k(k≠0)的直線與橢圓交于A、B兩點,P是線段AB的垂直平分線與橢圓E的一個交點,若△APB的面積為
40
9
,求k的值.

查看答案和解析>>

同步練習冊答案