【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若 = ,則這個(gè)三角形必含有( )
A.90°的內(nèi)角
B.60°的內(nèi)角
C.45°的內(nèi)角
D.30°的內(nèi)角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣DEF中,側(cè)面ABED是邊長(zhǎng)為2的菱形,且∠ABE= ,BC= ,四棱錐F﹣ABED的體積為2,點(diǎn)F在平面ABED內(nèi)的正投影為G,且G在AE上,點(diǎn)M是在線段CF上,且CM= CF.
(Ⅰ)證明:直線GM∥平面DEF;
(Ⅱ)求二面角M﹣AB﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)集A={a1 , a2 , …,an}(1=a1<a2<…<an , n≥2)具有性質(zhì)P:對(duì)任意的k(2≤k≤n),i,j(1≤i≤j≤n),使得ak=ai+aj成立.
(Ⅰ)分別判斷數(shù)集{1,3,4}與{1,2,3,6}是否具有性質(zhì)P,并說(shuō)明理由;
(Ⅱ)求證:an≤2a1+a2+…+an﹣1(n≥2);
(Ⅲ)若an=72,求數(shù)集A中所有元素的和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選修4-5:不等式選講】
已知f(x)=|x﹣1|+|x+2|.
(I)若不等式f(x)>a2對(duì)任意實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值的集合T;
(Ⅱ)設(shè)m、n∈T,證明: |m+n|<|mn+3|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:y=﹣x+3與橢圓C:mx2+ny2=1(n>m>0)有且只有一個(gè)公共點(diǎn)P(2,1).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若直線l′:y=﹣x+b交C于A,B兩點(diǎn),且PA⊥PB,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1 , M是AB的中點(diǎn),△A1MC1是等腰三角形,D為CC1的中點(diǎn),E為BC上一點(diǎn).
(Ⅰ)若DE∥平面A1MC1 , 求 ;
(Ⅱ)求直線BG和平面A1MC1所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) ,已知0<a<b<c,且f(a)f(b)f(c)<0,若x0是函數(shù)f(x)的一個(gè)零點(diǎn),則下列不等式不可能成立的是( )
A.x0<a
B.0<x0<1
C.b<x0<c
D.a<x0<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足f(x+2)= f(x),當(dāng)x∈[0,2]時(shí),f(x)= ,函數(shù)g(x)=x3+3x2+m.若對(duì)任意s∈[﹣4,﹣2),存在t∈[﹣4,﹣2),不等式f(s)﹣g(t)≥0成立,則實(shí)數(shù)m的取值范圍是( )
A.(﹣∞,﹣12]
B.(﹣∞,14]
C.(﹣∞,﹣8]
D.(﹣∞, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù) 的圖象上每點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變),得到函數(shù)y=f(x)的圖象.
(1)求函數(shù)f(x)的解析式及其圖象的對(duì)稱軸方程;
(2)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若 ,求sinB的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com