【題目】已知函數(shù)f(x)= +log2017(2﹣x)的定義域為( )
A.(﹣2,1]
B.[1,2]
C.[﹣1,2)
D.(﹣1,2)
【答案】C
【解析】解:函數(shù)f(x)= +log2017(2﹣x), 要使函數(shù)有意義:需滿足 ,
解得:﹣1≤x<2.
故選C.
【考點精析】本題主要考查了函數(shù)的定義域及其求法的相關知識點,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】以下命題正確的是( )
A.α,β都是第一象限角,若cosα>cosβ,則sinα>sinβ
B.α,β都是第二象限角,若sinα>sinβ,則tanα>tanβ
C.α,β都是第三象限角,若cosα>cosβ,則sinα>sinβ
D.α,β都是第四象限角,若sinα>sinβ,則tanα>tanβ
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其導函數(shù)的兩個零點為和.
(I)求曲線在點處的切線方程;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O為AC與BD的交點,E為棱PB上一點. (Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P﹣EAD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其導函數(shù)的兩個零點為和.
(I)求曲線在點處的切線方程;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x的不等ax2﹣3x+2>0的解集{x|x<1或x>b}
(Ⅰ)求a,b的值;
(Ⅱ)解關于x的不等式:ax2﹣(ac+b)x+bx<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),若曲線在點處的切線斜率為3,且時, 有極值。
(1)求函數(shù)的解析式;
(2)求函數(shù)在上的最值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x+ 的圖象過點P(1,5). (Ⅰ)求實數(shù)m的值,并證明函數(shù)f(x)是奇函數(shù);
(Ⅱ)利用單調(diào)性定義證明f(x)在區(qū)間[2,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①△ABC中角A,B,C的對邊分別是a,b,c,若a>b,則cosA<cosB,cos2A<cos2B;
②a,b∈R,若a>b,則a3>b3;
③若a<b,則 < ;
④設等差數(shù)列{an}的前n項和為Sn , 若S2016﹣S1=1,則S2017>1.
其中正確命題的序號是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com