A. | $\frac{19}{10}$ | B. | $\frac{29}{20}$ | C. | $\frac{40}{21}$ | D. | $\frac{36}{19}$ |
分析 當(dāng)n≥2時(shí),$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+n-1,即有$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}=n+1$
可得($\frac{{a}_{2}}{{2}^{2}}-\frac{{a}_{1}}{{2}_{1}})+(\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}})+…(\frac{{a}_{n}}{{2}^{2}}-\frac{{a}_{n-1}}{{2}^{n-1}})$+($\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}}$)+…+($\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}$)=1+2+…+(n-1)
bn=$\frac{{a}_{n}}{{2}^{n}}$-1=$\frac{n(n-1)}{2}$,$\frac{1}{_{n}}$=2($\frac{1}{n-1}-\frac{1}{n}$)
則$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{20}}$+…+$\frac{1}{_{n}}$=2($\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n-1}-\frac{1}{n}$)即可求解
解答 解:∵當(dāng)n≥2時(shí),$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+n-1,∴$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}=n+1$
$\frac{{a}_{2}}{{2}^{2}}-\frac{{a}_{1}}{{2}^{1}}=1,\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}}=2,…\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}=n-1$
∴($\frac{{a}_{2}}{{2}^{2}}-\frac{{a}_{1}}{{2}_{1}})+(\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}})+…(\frac{{a}_{n}}{{2}^{2}}-\frac{{a}_{n-1}}{{2}^{n-1}})$+($\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}}$)+…+($\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}$)=1+2+…+(n-1)
∴$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{1}}{{2}^{1}}=\frac{(n-1)(1+n-1)}{2}=\frac{n(n-1)}{2}$
∴bn=$\frac{{a}_{n}}{{2}^{n}}$-1=$\frac{n(n-1)}{2}$,$\frac{1}{_{n}}$=2($\frac{1}{n-1}-\frac{1}{n}$)
∴則$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{20}}$+…+$\frac{1}{_{n}}$=2($\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n-1}-\frac{1}{n}$)
故$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{20}}$等于2(1-$\frac{1}{20}$)=$\frac{19}{10}$
故選:A
點(diǎn)評 本題考查了累加法求數(shù)列通項(xiàng),裂項(xiàng)相消法求和,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\sqrt{6}$ | B. | 1+$\sqrt{5}$ | C. | 1+$\sqrt{3}$ | D. | 1+$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{32}{3}$$\sqrt{6}$cm3 | B. | $\frac{64}{3}$$\sqrt{6}$cm3 | C. | $\frac{32}{3}$$\sqrt{2}$cm3 | D. | $\frac{64}{3}$$\sqrt{2}$cm3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i>1010 | B. | i<1010 | C. | i>1009 | D. | i<1009 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5$\sqrt{13}$ | B. | 5$\sqrt{11}$ | C. | 5$\sqrt{7}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 恰有1名女生與恰有2名女生 | B. | 至少有1名男生與全是男生 | ||
C. | 至少有1名男生與至少有1名女生 | D. | 至少有1名女生與全是男生 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要 | B. | 充分不必要 | ||
C. | 必要不充分 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{6}{5}$ | C. | $\frac{8}{5}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com