有下列命題:①不存在;②不存在;③對于函數(shù);④對于函數(shù),若x0∈(1,2),總有.其中正確的是

A. ①②;      B. ①③;       C. ②③④;       D. ②③

C


解析:

故①錯;②正確;③函數(shù)有,不存在;④正確,故正確的有②③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)同時滿足下列條件:①在閉區(qū)間[a,b]內(nèi)連續(xù),②在開區(qū)間(a,b)內(nèi)可導(dǎo)且其導(dǎo)函數(shù)為f′(x),那么在區(qū)間(a,b)內(nèi)至少存在一點ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我們把這一規(guī)律稱為函數(shù)f(x)在區(qū)間(a,b)內(nèi)具有“Lg”性質(zhì),并把其中的ξ稱為中值.有下列命題:
①若函數(shù)f(x)在(a,b)具有“Lg”性質(zhì),ξ為中值,點A(a,f(a)),B(b,f(b)),則直線AB的斜率為f′(ξ);
②函數(shù)y=
2-
x2
2
在(0,2)內(nèi)具有“Lg”性質(zhì),且中值ξ=
2
,f′(ξ)=-
2
2
;
③函數(shù)f(x)=x3在(-1,2)內(nèi)具有“Lg”性質(zhì),但中值ξ不唯一;
④若定義在[a,b]內(nèi)的連續(xù)函數(shù)f(x)對任意的x1、x2∈[a,b],x1<x2,有
1
2
[f(x1)+f(x2)]<f(
x1+x2
2
)恒成立,則函數(shù)f(x)在(a,b)內(nèi)具有“Lg”性質(zhì),且必有中值ξ=
x1+x2
2

其中你認(rèn)為正確的所有命題序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,不是全稱命題的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題的否定不正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=-2cosx,x∈[0,π]與函數(shù)g(x)=
1
2
x2+lnx
有下列命題:
①函數(shù)f(x)的圖象不管怎樣平移所得圖象對應(yīng)的函數(shù)都不會是奇函數(shù);
②方程g(x)=0沒有零點;
③函數(shù)f(x)和函數(shù)g(x)圖象上存在平行的切線;
④若函數(shù)f(x)在點P處的切線平行于函數(shù)g(x)在點Q處的切線,則直線PQ的斜率為
1
2-π

其中正確的是
③④
③④
(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)對于函數(shù)f(x)=-2cosx,x∈[0,π]與函數(shù)g(x)=
1
2
x2+lnx
有下列命題:
①無論函數(shù)f(x)的圖象通過怎樣的平移所得的圖象對應(yīng)的函數(shù)都不會是奇函數(shù);
②函數(shù)f(x)的圖象與兩坐標(biāo)軸及其直線x=π所圍成的封閉圖形的面積為4;
③方程g(x)=0有兩個根;
④函數(shù)g(x)圖象上存在一點處的切線斜率小于0;
⑤若函數(shù)f(x)在點P處的切線平行于函數(shù)g(x)在點Q處的切線,則直線PQ的斜率為
1
2-π
,其中正確的命題是
②⑤
②⑤
.(把所有正確命題的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案