設△ABC和△DBC所在的兩個平面互相垂直,且AB=BC=BD,∠ABC=∠DBC=,求:
(1)直線AD與平面BCD所成角的大;
(2)異面直線ADBC所成的角;
(3)二面角ABDC的大小.
(1) 45° (2) ADBC所成的角為90°(3) 二面角ABDC大小為π-arctan2.
(1)如圖,在平面ABC內(nèi),過AAHBC,垂足為H,則AH⊥平面DBC
∴∠ADH即為直線AD與平面BCD所成的角 由題設知△AHB≌△AHD,則DHBH,AH=DH
∴∠ADH=45°

(2)∵BCDH,且DHAD在平面BCD上的射影,
BCAD,故ADBC所成的角為90°。
(3)過HHRBD,垂足為R,連結(jié)AR,則由三垂線定理知,ARBD,故∠ARH為二面角ABDC的平面角的補角 設BC=a,則由題設知,AH=DH=,在△HDB中,HR=a,∴tanARH==2
故二面角ABDC大小為π-arctan2.
另法(向量法): (略)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖5所示,四棱錐P-ABCD的底面ABCD是半徑為R的圓的內(nèi)接四邊形,其中BD是圓的直徑,∠ABD="60°," ∠BDC=45°,PD垂直底面ABCD,PD=分別是PB,CD上的點,且,過點E作BC的平行線交PC于G.
(1)求BD與平面ABP所成角θ的正弦值;
(2)證明:△EFG是直角三角形;
(3)當時,求△EFG的面積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,點A(0,0,a),在四面體ABCD中,AB⊥平面BCD,BC=CD,∠BCD=90°,∠ADB=30°,E、F分別是AC、AD的中點.求D、CE、F這四點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知正方體ABCD—A1B1C1D1,過頂點A1在空間作直線,使直線與直線AC和BC1所成的角都等于600,這樣的直線可以作                                    (  )
A.4條B.3條C.2條D.1條

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一條直線和一個平面所成的角為,則此直線和平面內(nèi)不經(jīng)過斜足的所有直線所成的角中最大的角是____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知各棱長均為a的正四面體ABCDEAD邊的中點,連結(jié)CE.求CE與底面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1所示,在邊長為的正方形中,,且,分別交于點,將該正方形沿、折疊,使得重合,構(gòu)成如圖2所示的三棱柱
(Ⅰ)求證:
(Ⅱ)在底邊上有一點,,
求證:
(III)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

異面直線所成角θ的范圍是( 。
A.0°<θ<90°B.0°<θ<180°C.0°<θ≤90°D.0°≤θ<90°

查看答案和解析>>

同步練習冊答案