【題目】2019年春季以來(lái),在非洲豬瘟、環(huán)保禁養(yǎng)、上行周期等因素形成的共振條件下,豬肉價(jià)格連續(xù)暴漲.某養(yǎng)豬企業(yè)為了抓住契機(jī),決定擴(kuò)大再生產(chǎn),根據(jù)以往的養(yǎng)豬經(jīng)驗(yàn)預(yù)估:在近期的一個(gè)養(yǎng)豬周期內(nèi),每養(yǎng)百頭豬,所需固定成本為20萬(wàn)元,其它為變動(dòng)成本:每養(yǎng)1百頭豬,需要成本14萬(wàn)元,根據(jù)市場(chǎng)預(yù)測(cè),銷售收入(萬(wàn)元)與(百頭)滿足如下的函數(shù)關(guān)系:(注:一個(gè)養(yǎng)豬周期內(nèi)的總利潤(rùn)(萬(wàn)元)=銷售收入-固定成本-變動(dòng)成本).

1)試把總利潤(rùn)(萬(wàn)元)表示成變量(百頭)的函數(shù);

2)當(dāng)(百頭)為何值時(shí),該企業(yè)所獲得的利潤(rùn)最大,并求出最大利潤(rùn).

【答案】1;(2,最大利潤(rùn)為109萬(wàn)元.

【解析】

1)根據(jù)題意即可求出函數(shù)的解析式;

2)分段求出最大值,再比較即可求出當(dāng)時(shí),該企業(yè)所獲得的利潤(rùn)最大,從而求出最大利潤(rùn).

1)由題意可得:

所以,總利潤(rùn).

2)當(dāng)時(shí),,當(dāng)時(shí),的值最大,最大值為,

當(dāng)時(shí),,當(dāng)時(shí),的值最大,最大值為,

綜上所述,當(dāng)時(shí),該企業(yè)所獲得的利潤(rùn)最大,最大利潤(rùn)為萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查某校高二學(xué)生的身高是否與性別有關(guān),隨機(jī)調(diào)查該校64名高二學(xué)生,得到2×2列聯(lián)表如表:

男生

女生

總計(jì)

身高低于170cm

8

24

32

身高不低于170cm

26

6

32

總計(jì)

34

30

64

附:K2

PK2k0

 0.050

 0.010

 0.001

 k0

3.841

6.635

 10.828

由此得出的正確結(jié)論是(

A.在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“身高與性別無(wú)關(guān)”

B.在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“身高與性別有關(guān)”

C.99.9%的把握認(rèn)為“身高與性別無(wú)關(guān)”

D.99.9%的把握認(rèn)為“身高與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出如下四個(gè)命題:①若“”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個(gè)數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二年級(jí)共有800名學(xué)生參加了數(shù)學(xué)測(cè)驗(yàn)(滿分150分),已知這800名學(xué)生的數(shù)學(xué)成績(jī)均不低于90分,將這800名學(xué)生的數(shù)學(xué)成績(jī)分組如:,,,,得到的頻率分布直方圖如圖所示,則下列說(shuō)法中正確的是( )

;②這800名學(xué)生中數(shù)學(xué)成績(jī)?cè)?/span>110分以下的人數(shù)為160; ③這800名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)約為121.4;④這800名學(xué)生數(shù)學(xué)成績(jī)的平均數(shù)為125.

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集.

1)解關(guān)于的不等式;

2)記為(1)中不等式的解集,為不等式組的整數(shù)解集,若恰有三個(gè)元素,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓W:的焦距與橢圓Ω:+y2=1的短軸長(zhǎng)相等,且W與Ω的長(zhǎng)軸長(zhǎng)相等,這兩個(gè)橢圓的在第一象限的交點(diǎn)為A,直線l經(jīng)過(guò)Ω在y軸正半軸上的頂點(diǎn)B且與直線OA(O為坐標(biāo)原點(diǎn))垂直,l與Ω的另一個(gè)交點(diǎn)為C,l與W交于M,N兩點(diǎn).

(1)求W的標(biāo)準(zhǔn)方程:

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列三個(gè)命題:

①函數(shù)的單調(diào)增區(qū)間是

②經(jīng)過(guò)任意兩點(diǎn)的直線,都可以用方程來(lái)表示;

③命題:“ ,”的否定是“,”,

其中正確命題的個(gè)數(shù)有( )個(gè)

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,各個(gè)側(cè)面均是邊長(zhǎng)為的正方形,為線段的中點(diǎn)

(Ⅰ)求證:⊥平面;

(Ⅱ)求證:直線∥平面;

(Ⅲ)設(shè)為線段上任意一點(diǎn),在內(nèi)的平面區(qū)域(包括邊界)是否存在點(diǎn),使,并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,使得為真命題,求的取值范圍;

2)若不等式的解集為D,若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案
閸忥拷 闂傦拷