11.若偶函數(shù)f(x)在(-∞,0]上單調(diào)遞減,a=log2$\frac{1}{3}$,b=log4$\frac{1}{5}$,c=${2^{\frac{3}{2}}}$,則f(a),f(b),f(c)滿足(  )
A.f(a)<f(b)<f(c)B.f(b)<f(a)<f(c)C.f(c)<f(a)<f(b)D.f(c)<f(b)<f(a)

分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關系結(jié)合對數(shù)的運算法則和對數(shù)的單調(diào)性的性質(zhì)進行比較即可.

解答 解:∵函數(shù)偶函數(shù)f(x)在(-∞,0]上單調(diào)遞減,
∴函數(shù)f(x)在[0,+∞)上為增函數(shù),
則f(a)=f(log2$\frac{1}{3}$)=f(-log23)=f(log23),
f(b)=f(log4$\frac{1}{5}$)=f(-log45)=f(log45),
∵log23=log49,
∴1<log45<log49<2,
而${2^{\frac{3}{2}}}$>2,
∴1<log45<log49<${2^{\frac{3}{2}}}$,
則f(log45)<f(log49)<f(${2^{\frac{3}{2}}}$),
即f(log45)<f(log23)<f(${2^{\frac{3}{2}}}$),即f(b)<f(a)<f(c),
故選:B.

點評 本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性的性質(zhì)結(jié)合對數(shù)的運算法則進行轉(zhuǎn)化是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程為$y=\frac{3}{4}x$,則雙曲線的離心率為( 。
A.$\frac{5}{3}$B.$\frac{{\sqrt{21}}}{3}$C.$\frac{5}{4}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的漸近線為等邊三角形OAB的邊OA、OB所在直線,直線AB過焦點,且|AB|=2,則雙曲線實軸長為( 。
A.$\sqrt{3}$B.$3\sqrt{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=sin(2x-$\frac{π}{3}$),g(x)=x2-2,若對任意的實數(shù)x1,總存在實數(shù)x2使得f(x1)=g(x2)成立,則x2的取值范圍是( 。
A.[-1,1]B.$[{-\sqrt{3},\sqrt{3}}]$C.(-∞,-1]∪[1,+∞)D.[-$\sqrt{3}$,-1]∪[1,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.兩個相關變量滿足如下關系:
x23456
y25505664
根據(jù)表格已得回歸方程:$\hat y$=9.4x+9.2,表中有一數(shù)據(jù)模糊不清,請推算該數(shù)據(jù)是(  )
A.37.4B.39C.38.5D.40.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.化簡:$\frac{1+sin2x-cos2x}{1-sin2x+cos2x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=acosx-$\frac{1}{a}$(a>0且a≠1)的圖象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖是一個簡單幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,若該幾何體的體積為$\frac{20}{3}$,則圖中x的值為(  )
A.3B.1C.2D.$\frac{5}{2}$

查看答案和解析>>

同步練習冊答案