已知二次函數(shù)=的導(dǎo)數(shù)為,>0,對任意實數(shù)都有≥0,則的最小值為( )
A.4 B.3 C.8 D.2
D
【解析】
試題分析:先求導(dǎo),由f′(0)>0可得b>0,因為對于任意實數(shù)x都有f(x)≥0,所以結(jié)合二次函數(shù)的圖象可得a>0且b2-4ac≤0,又因為= +1,利用均值不等式即可求解解:∵f'(x)=2ax+b,∴f'(0)=b>0;∵對于任意實數(shù)x都有f(x)≥0,∴a>0且b2-4ac≤0,∴b2≤4ac,∴c>0;所以= +1,此時a=c時取得等號,故選D
考點:導(dǎo)數(shù)的運算,基本不等式
點評:本題考查了求導(dǎo)公式,二次函數(shù)恒成立問題以及均值不等式,綜合性較強(qiáng).
科目:高中數(shù)學(xué) 來源: 題型:
f(1) |
f′(0) |
A、3 | ||
B、
| ||
C、2 | ||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
f(1) | f′(0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 | anan+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
f(1) |
f′(0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com