10.設(shè)集合A={x||x-a|<2},B={x|$\frac{1}{4}$<2x<8}.
(1)若a=-1,求集合A;
(2)若A∩B=A,求實數(shù)a的取值范圍.

分析 (1)把a的值代入A中不等式,求出解確定出A即可;
(2)求出B中不等式的解集確定出B,根據(jù)A與B的交集為A,得到A為B的子集,確定出a的范圍即可.

解答 解:(1)把a=-1代入A中不等式得:|x+1|<2,
變形得:-2<x+1<2,
解得:-3<x<1,即A={x|-3<x<1};
(2)∵A∩B=A,A={x||x-a|<2}={x|a-2<x<a+2},B={x|$\frac{1}{4}$<2x<8}={x|-2<x<3},
∴A⊆B,
∴$\left\{\begin{array}{l}{a-2≥-2}\\{a+2≤3}\end{array}\right.$,
解得:0≤a≤1.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知奇函數(shù)f(x)是定義在R上的可導函數(shù),其導函數(shù)為f′(x),當x>0時有2f(x)+xf′(x)>x2,則不等式(x+2014)2f(x+2014)+4f(-2)<0的解集為( 。
A.(-∞,-2012)B.(-2016,-2012)C.(-∞,-2016)D.(-2016,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在如圖所示的平面直角坐標系中,已知點A(1,0)和點B(-1,0),|$\overrightarrow{OC}$|=1,且∠AOC=x,其中O為坐標原點.
(1)若x=$\frac{3}{4}$π,設(shè)點D為線段OA上的動點,求|$\overrightarrow{OC}$+$\overrightarrow{OD}$|的最小值;
(2)若x∈[0,$\frac{π}{2}$],向量$\overrightarrow{m}$=$\overrightarrow{BC}$,$\overrightarrow{n}$=(1-cosx,sinx-2cosx),求$\overrightarrow{m}•\overrightarrow{n}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,AA1=$\sqrt{2}$,E,F(xiàn)分別是BC,CC1的中點.
(Ⅰ)證明:平面AEF⊥平面B1BCC1
(Ⅱ)求三棱錐B1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx-x+$\frac{a}{x}$+1(a∈R).
(1)討論f(x)的單調(diào)性與極值點的個數(shù);
(2)當a=0時,關(guān)于x的方程f(x)=m(m∈R)有2個不同的實數(shù)根x1,x2,證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知三棱錐P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,則三棱錐P-ABC外接球的體積為$\sqrt{6}π$.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽合肥一中高三上學期月考一數(shù)學(文)試卷(解析版) 題型:解答題

已知函數(shù),函數(shù)有相同極值點.

(1)求函數(shù)的最大值;

(2)求實數(shù)的值;

(3)若,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽合肥一中高三上學期月考一數(shù)學(文)試卷(解析版) 題型:選擇題

設(shè)函數(shù),則“”是“函數(shù)上存在零點”的( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年河北正定中學高二上月考一數(shù)學(文)試卷(解析版) 題型:選擇題

若不等式表示的平面區(qū)域為,均為內(nèi)一點,為坐標原點,,則下列判斷正確的是( )

A.的最小值為 B.的最小值為

C.的最大值為 D.的最大值為

查看答案和解析>>

同步練習冊答案