分析 (Ⅰ)由題意可知:S3=3a2=12,求得a2=4,由d=a3-a2得到公差,再求出首項,即可求出數(shù)列{an}的通項公式;
(Ⅱ)求出等差數(shù)列的前n項和,取倒數(shù)后利用裂項相消法求得$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.
解答 解:(Ⅰ)設(shè)等差數(shù)列{an}的公差是d,
由${a}_{3}=\frac{1}{2}•{S}_{3}=6$,得S3=12,
由等差數(shù)列的性質(zhì)可知:S3=3a2=12,解得:a2=4,
∴d=a3-a2=6-4=2,則a1=a2-d=2,
∴數(shù)列{an}的通項公式為an=a1+(n-1)d=2+2(n-1)=2n;
(Ⅱ)由(1)可知Sn=$\frac{n(2+2n)}{2}=n(n+1)$,
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}-\frac{1}{n+1}$=$1-\frac{1}{n+1}=\frac{n}{n+1}$.
點評 本題考查等差數(shù)列通項公式的求法,訓(xùn)練了裂項相消法求數(shù)列的前n項和,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{3}{5}$,$\frac{2}{5}$) | B. | (1,-1) | C. | (-1,$\frac{2}{5}$) | D. | (-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) | B. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z) | ||
C. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com