(本小題滿分16分)
已知函數(shù),.
(1)當(dāng)時(shí),若函數(shù)在區(qū)間上是單調(diào)增函數(shù),試求的取值范圍;
(2)當(dāng)時(shí),直接寫出(不需給出演算步驟)函數(shù) ()的單調(diào)增區(qū)間;
(3)如果存在實(shí)數(shù),使函數(shù),)在
 處取得最小值,試求實(shí)數(shù)的最大值.

(1)(2)時(shí),增區(qū)間,時(shí),減區(qū)間 (3)

解析試題分析:(1)函數(shù)在區(qū)間上是單調(diào)增函數(shù)
(2)當(dāng)時(shí),上是增函數(shù);
當(dāng)時(shí),上是增函數(shù).
(3),
根據(jù)題意,在區(qū)間上恒成立,
成立
整理得:,
 ①
當(dāng)時(shí),不等式①恒成立;
當(dāng)時(shí),不等式①可化為   ②

根據(jù)題設(shè)條件,的圖象是開口向下的拋物線,故它在閉區(qū)間上的最小值必在區(qū)間端點(diǎn)取得,又,所以不等式②恒成立的條件是
,變量分離得:,③
由條件,存在實(shí)數(shù)使得③有解,所以,
,整理得,解得:
,所以,即實(shí)數(shù)的最大值是.
考點(diǎn):求函數(shù)的單調(diào)區(qū)間最值
點(diǎn)評(píng):本題第三問難度較大,對(duì)于學(xué)生沒有明顯的區(qū)分度

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知曲線f (x ) =" a" x 2 +2在x=1處的切線與2x-y+1=0平行
(1)求f (x )的解析式 
(2)求由曲線y="f" (x ) 與,所圍成的平面圖形的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù) 。
如果,函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;
當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),(為自然對(duì)數(shù)的底數(shù))。
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值和最小值;
(2)若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)于都有成立,試求的取值范圍;
(3)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知函數(shù),函數(shù)的最小值為,
(1)當(dāng)時(shí),求
(2)是否存在實(shí)數(shù)同時(shí)滿足下列條件:①;②當(dāng)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/22/d/1vcsg4.png" style="vertical-align:middle;" /> 時(shí),值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d9/c/1beqn3.png" style="vertical-align:middle;" />?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

本小題滿分12分)設(shè)函數(shù)f(x)= ,其中
(1)求f(x)的單調(diào)區(qū)間;(2)討論f(x)的極值    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
(1)求的值;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,函數(shù).
(1)求的極值;
(2)若上為單調(diào)遞增函數(shù),求的取值范圍;
(3)設(shè),若在是自然對(duì)數(shù)的底數(shù))上至少存在一個(gè),使得成立,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案