【題目】在四棱錐中,底面是矩形,側(cè)棱底面, 分別是的中點(diǎn), .
(Ⅰ)求證: 平面;
(Ⅱ)求證: 平面;
(Ⅲ)若, ,求三棱錐的體積..
【答案】(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)
【解析】試題分析:(Ⅰ)由中位線定理可得,進(jìn)而得線面平行;
(Ⅱ)易證得, 從而證得線面垂直;
(Ⅲ)由平面,點(diǎn)是的中點(diǎn),所以點(diǎn)到平面的距離等于,利用即可求解.
試題解析:
解:(Ⅰ)證明:連接,
因?yàn)?/span>分別是的中點(diǎn),
所以.
又因?yàn)?/span>平面, 平面,
所以平面.
(Ⅱ)證明:因?yàn)?/span>, 為中點(diǎn).
所以.
又因?yàn)?/span>是矩形,
所以.
因?yàn)?/span>底面,
所以.
因?yàn)?/span>,
所以平面.
因?yàn)?/span>平面,
所以.
又因?yàn)?/span>,
所以平面.
(Ⅲ)由(Ⅱ)知平面.
因?yàn)?/span>,
所以平面.
因?yàn)辄c(diǎn)是的中點(diǎn),
所以點(diǎn)到平面的距離等于.
所以,
即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,若f(x)≥2ln x在[1,+∞)上恒成立,則a的取值范圍是( )
A. (1,+∞) B. [1,+∞)
C. (2,+∞) D. [2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求實(shí)數(shù)m的值;
(2)若ARB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,AC與BD相交于點(diǎn)O,AE⊥平面ABCD,CF//AE,AB=AE=2.
(1)求證:BD⊥平面ACFE;
(2)當(dāng)直線FO與平面BDE所成的角為45°時,求二面角B﹣EF﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x-的定義域?yàn)?/span>(0,1](a為實(shí)數(shù)).
(1)當(dāng)a=1時,求函數(shù)y=f(x)的值域;
(2)求函數(shù)y=f(x)在區(qū)間(0,1]上的最大值及最小值,并求出當(dāng)函數(shù)f(x)取得最值時x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全集,非空集合,且中的點(diǎn)在平面直角坐標(biāo)系內(nèi)形成的圖形關(guān)于軸、軸和直線均對稱.下列命題:
①若,則;
②若,則中至少有8個元素;
③若,則中元素的個數(shù)一定為偶數(shù);
④若,則.
其中正確命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若存在、滿足.求證: (其中為的導(dǎo)函數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: (, )的左、右焦點(diǎn)分別為、,過點(diǎn)作圓: 的切線,切點(diǎn)為,且直線與雙曲線的一個交點(diǎn)滿足,設(shè)為坐標(biāo)原點(diǎn),若,則雙曲線的漸近線方程為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com