【題目】 為向國際化大都市目標(biāo)邁進(jìn),沈陽市今年新建三大類重點(diǎn)工程,它們分別是30項(xiàng)基礎(chǔ)設(shè)施類工程,20項(xiàng)民生類工程和10項(xiàng)產(chǎn)業(yè)建設(shè)類工程.現(xiàn)有來沈陽的3名工人相互獨(dú)立地從這60個(gè)項(xiàng)目中任選一個(gè)項(xiàng)目參與建設(shè).
(Ⅰ)求這3人選擇的項(xiàng)目所屬類別互異的概率;
(Ⅱ)將此3人中選擇的項(xiàng)目屬于基礎(chǔ)設(shè)施類工程或產(chǎn)業(yè)建設(shè)類工程的人數(shù)記為,求的分布列和數(shù)學(xué)期望.
【答案】(I);(II)分布列見解析,.
【解析】
試題(I)人選擇的項(xiàng)目所屬類別互異的概率:;(II)任一名工人選擇的項(xiàng)目屬于基礎(chǔ)設(shè)施類或產(chǎn)業(yè)建設(shè)類工程的概率:且符合二項(xiàng)分布,根據(jù)二項(xiàng)分布分布列公式即可求得.
試題解析:記第名工人選擇的項(xiàng)目屬于基礎(chǔ)設(shè)施類,民生類,產(chǎn)業(yè)建設(shè)類分別為事件.
由題意知均相互獨(dú)立.
則
(Ⅰ)3人選擇的項(xiàng)目所屬類別互異的概率:
(Ⅱ)任一名工人選擇的項(xiàng)目屬于基礎(chǔ)設(shè)施類或產(chǎn)業(yè)建設(shè)類工程的概率:
由.
的分布列為
0 | 1 | 2 | 3 | |
其數(shù)學(xué)期望為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校升旗儀式上,主持人站在主席臺(tái)前沿D處,測(cè)得旗桿AB頂部的仰角為俯角最后一排學(xué)生C的俯角為最后一排學(xué)生C測(cè)得旗桿頂部的仰角為旗桿底部與學(xué)生在一個(gè)水平面上,并且不計(jì)學(xué)生身高.
(1)設(shè)米,試用和表示旗桿的高度AB(米);
(2)測(cè)得米,若國歌長度約為50秒,國旗班升旗手應(yīng)以多大的速度勻速升旗才能是國旗到達(dá)旗桿頂點(diǎn)時(shí)師生的目光剛好停留在B處?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,且滿足.
(1)判斷函數(shù)在上的單調(diào)性,并用定義證明;
(2)設(shè)函數(shù),求在區(qū)間上的最大值;
(3)若存在實(shí)數(shù)m,使得關(guān)于x的方程恰有4個(gè)不同的正根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)志愿者協(xié)會(huì)有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理﹑化學(xué)等其他互不相同的七個(gè)學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(dòng)(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行抽樣檢查,測(cè)得身高情況的統(tǒng)計(jì)圖如圖所示:
(1)估計(jì)該校男生的人數(shù);
(2)估計(jì)該校學(xué)生身高在170~185cm的概率;
(3)從樣本中身高在180~190cm的男生中任選2人,求至少有1人身高在185~190cm的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為集合的子集,且,若,則稱為集合的元“大同集”.
(1)寫出實(shí)數(shù)集的一個(gè)二元“大同集”;
(2)是否存在正整數(shù)集的二元“大同集”,請(qǐng)說明理由;
(3)求出正整數(shù)集的所有三元“大同集”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長軸長為4.
求橢圓E的方程;
若A是橢圓E的左頂點(diǎn),經(jīng)過左焦點(diǎn)F的直線l與橢圓E交于C,D兩點(diǎn),求與為坐標(biāo)原點(diǎn)的面積之差絕對(duì)值的最大值.
已知橢圓E上點(diǎn)處的切線方程為,T為切點(diǎn)若P是直線上任意一點(diǎn),從P向橢圓E作切線,切點(diǎn)分別為N,M,求證:直線MN恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com