已知的頂點(diǎn),過(guò)點(diǎn)的內(nèi)角平分線所在直線方程是,過(guò)點(diǎn)C的中線所在直線的方程是
(1)求頂點(diǎn)B的坐標(biāo);(2)求直線BC的方程;
(1)(10,5);(2)
解析試題分析:(1)設(shè).因?yàn)锽點(diǎn)在直線上,所以可得 ①.又因?yàn)锳,B兩點(diǎn)的中點(diǎn)在直線上,所以可得 ②.所以由①,②可解得的值,即可求出B點(diǎn)的坐標(biāo).
(2)由于過(guò)點(diǎn)的內(nèi)角平分線所在直線方程為.所以通過(guò)求出點(diǎn)A關(guān)于平分線的對(duì)稱點(diǎn),然后再與點(diǎn)B寫出直線方程即為所求的直線BC的方程.
試題解析:(1)設(shè),則中點(diǎn),
由,解得,故. 6分
(2)設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,
則,得,即,
直線經(jīng)過(guò)點(diǎn)和點(diǎn),故直線的方程. 12分
考點(diǎn):1.直線方程的表示.2.求關(guān)于直線的點(diǎn)的對(duì)稱點(diǎn).3.線段的中點(diǎn)問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:()過(guò)點(diǎn)(2,0),且橢圓C的離心率為.
(1)求橢圓的方程;
(2)若動(dòng)點(diǎn)在直線上,過(guò)作直線交橢圓于兩點(diǎn),且為線段中點(diǎn),再過(guò)作直線.求直線是否恒過(guò)定點(diǎn),若果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)點(diǎn)P(1,4)引一條直線,使它在兩條坐標(biāo)軸上的截距為正值,且它們的和最小,求這條直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線過(guò)點(diǎn),直線的斜率為且過(guò)點(diǎn).
(1)求、的交點(diǎn)的坐標(biāo);
(2)已知點(diǎn),若直線過(guò)點(diǎn)且與線段相交,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)推導(dǎo)點(diǎn)到直線的距離公式;
(2)已知直線:和:互相平行,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線L經(jīng)過(guò)點(diǎn),且直線L在x軸上的截距等于在y軸上的截距的2倍,求直線L的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直角坐標(biāo)系中,射線OA: x-y=0(x≥0),OB: x+2y=0(x≥0),過(guò)點(diǎn)P(1,0)作直線分別交射線OA、OB于A、B兩點(diǎn).
(1)當(dāng)AB中點(diǎn)為P時(shí),求直線AB的斜率
(2)當(dāng)AB中點(diǎn)在直線上時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(已知橢圓 經(jīng)過(guò)點(diǎn)其離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于A、B兩點(diǎn),以線段為鄰邊作平行四邊形OAPB,其中頂點(diǎn)P在橢圓上,為坐標(biāo)原點(diǎn).求到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線經(jīng)過(guò)點(diǎn),傾斜角,
(1)寫出直線的參數(shù)方程
(2)設(shè)與圓相交與兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之積
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com