已知函數(shù)

(Ⅰ)當(dāng)時(shí), 求函數(shù)的單調(diào)增區(qū)間;

(Ⅱ)求函數(shù)在區(qū)間上的最小值;

(Ⅲ) 在(Ⅰ)的條件下,設(shè),

證明:.參考數(shù)據(jù):

 

【答案】

(Ⅰ) (Ⅱ)

(Ⅲ)用放縮法證明.

【解析】

試題分析:(Ⅰ)當(dāng)時(shí),,

。函數(shù)的單調(diào)增區(qū)間為   

(Ⅱ) ,

當(dāng),單調(diào)增。

當(dāng)單調(diào)減. 單調(diào)增。當(dāng),單調(diào)減,    

(Ⅲ)令,

 ,     即   ,

       

考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性 不等式的證明

點(diǎn)評(píng):本題考查函數(shù)的單調(diào)區(qū)間和函數(shù)的最小值的求法,而利用單調(diào)性證明不等式是難題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(江西卷理22)已知函數(shù),

.當(dāng)時(shí),求的單調(diào)區(qū)間;

.對(duì)任意正數(shù),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆陜西省師大附中、西工大附中高三第七次聯(lián)考理數(shù) 題型:解答題

(本題13分)
已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若單調(diào)增加,在單調(diào)減少,證明:<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河南省高二下學(xué)期第一次階段測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)當(dāng)時(shí),求的解集

(2)若關(guān)于的不等式的解集是,求的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

 (Ⅰ)當(dāng)時(shí),求的極小值;

 (Ⅱ)若直線對(duì)任意的都不是曲線的切線,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省梅州市高三年級(jí)10月月考文科數(shù)學(xué)試卷 題型:解答題

(滿分14分)已知函數(shù) 

       (1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

       (2)當(dāng)時(shí),討論的單調(diào)性

 

查看答案和解析>>

同步練習(xí)冊(cè)答案