已知點(diǎn)是橢圓上一點(diǎn),分別為的左右焦點(diǎn),的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),過點(diǎn)作直線,交橢圓異于兩點(diǎn),直線的斜率分別為,證明:為定值.
(Ⅰ);(Ⅱ)詳見解析.

試題分析:本題考查橢圓的定義、余弦定理及韋達(dá)定理的應(yīng)用.第一問是利用三角形面積公式、余弦定理、橢圓的定義,三個(gè)方程聯(lián)立,解出,再根據(jù)的關(guān)系求,本問分析已知條件是解題的關(guān)鍵;第二問是直線與橢圓相交于兩點(diǎn),先設(shè)出兩點(diǎn)坐標(biāo),本題的突破口是在消參后的方程中找出兩根之和、兩根之積,整理斜率的表達(dá)式,但是在本問中需考慮直線的斜率是否存在,此題中蘊(yùn)含了分類討論的思想的應(yīng)用.
試題解析:(Ⅰ)在中,
,得
由余弦定理,得
,
從而,即,從而,
故橢圓的方程為.                                          6分
(Ⅱ)當(dāng)直線的斜率存在時(shí),設(shè)其方程為,
,得.                 8分
設(shè),,
從而.                                                                             11分
當(dāng)直線的斜率不存在時(shí),得,得
綜上,恒有.                                              12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn),且垂直于橢圓的長軸,動直線垂直于,垂足為點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上(也不重合),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是橢圓的右焦點(diǎn),圓軸交于兩點(diǎn),是橢圓與圓的一個(gè)交點(diǎn),且 
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點(diǎn)與圓相切的直線的另一交點(diǎn)為,且的面積為,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為拋物線的焦點(diǎn),拋物線上點(diǎn)滿足

(Ⅰ)求拋物線的方程;
(Ⅱ)點(diǎn)的坐標(biāo)為(,),過點(diǎn)F作斜率為的直線與拋物線交于兩點(diǎn),、兩點(diǎn)的橫坐標(biāo)均不為,連結(jié)、并延長交拋物線于兩點(diǎn),設(shè)直線的斜率為,問是否為定值,若是求出該定值,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中,,.若以為焦點(diǎn)的橢圓經(jīng)過點(diǎn),則該橢圓的離心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓的左焦點(diǎn)作互相垂直的兩條直線,分別交橢圓于四點(diǎn),則四邊形面積的最大值與最小值之差為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F1,F(xiàn)2是雙曲線的左、右焦點(diǎn),過左焦點(diǎn)F1的直線與雙曲線C的左、右兩支分別交于A,B兩點(diǎn),若,則雙曲線的離心率是(   )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的焦點(diǎn)恰為雙曲線的右焦點(diǎn),且兩曲線交點(diǎn)的連線過點(diǎn),則雙曲線的離心率為  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的左焦點(diǎn)為,點(diǎn)為雙曲線右支上一點(diǎn),且與圓相切于點(diǎn),為線段的中點(diǎn),為坐標(biāo)原點(diǎn), 則=       

查看答案和解析>>

同步練習(xí)冊答案