在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設(shè)CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量e1=[
 
1
1
],并且矩陣M對應(yīng)的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2
2
sin(θ-
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.
分析:A.因為PA,PB為圓O的兩條切線,所以O(shè)P垂直平分弦AB,在Rt△OAP中,OM•MP=AM2,圓O中,AM•BM=CM•DM,由此能夠證明O,C,P,D四點共圓.
B.設(shè)M=
ab
cd
,則
ab
cd
1
1
=3
1
1
=
3
3
ab
cd
-1
2
=
9
15
,由此能求出M.
C.將ρ=2
2
sin(θ-
π
4
),
x=1+
4
5
t
y=-1-
3
5
t
分別化為普通方程:x2+y2+2x-2y=0,3x+4y+1=0,由此能求出弦長.
D.由柯西不等式知:(x+y+z)2≤[(
2
x
2+(
3
y
2+z2]•[(
1
2
2+(
1
3
2+12],故2x2+3y2+z2
24
11
,由此能求出2x2+3y2+z2的最小值.
解答:A.選修4-1:(幾何證明選講)
證明:因為PA,PB為圓O的兩條切線,
所以O(shè)P垂直平分弦AB,
在Rt△OAP中,OM•MP=AM2,…(4分)
在圓O中,AM•BM=CM•DM,
所以O(shè)M•MP=CM•DM,…(8分)
又弦CD不過圓心O,所以O(shè),C,P,D四點共圓.…(10分)
B.選修4-2:(矩陣與變換)
設(shè)M=
ab
cd
,則
ab
cd
1
1
=3
1
1
=
3
3
,
a+b=3
c+d=3
.…(4分)
ab
cd
-1
2
=
9
15
,故
-a+2b=9
-c+2d=15
.…(7分)
聯(lián)立以上兩方程組解得a=-1,b=4,c=-3,d=6,
故M=
-14
-36
. …(10分)
C.選修4-4:(坐標系與參數(shù)方程)
解:將方程ρ=2
2
sin(θ-
π
4
),
x=1+
4
5
t
y=-1-
3
5
t
分別化為普通方程:
x2+y2+2x-2y=0,3x+4y+1=0,…(6分)
由曲線C的圓心為C(-1,1),半徑為
2
,
所以圓心C到直線l的距離為
2
5

故所求弦長為2
2-(
2
5
)2
=
2
46
5
.…(10分)
D.選修4-5(不等式選講)
解:由柯西不等式可知:
(x+y+z)2≤[(
2
x
2+(
3
y
2+z2]•[(
1
2
2+(
1
3
2+12],…(5分)
2x2+3y2+z2
24
11
,
當且僅當
2
x
1
2
=
3
y
1
3
=
z
1
,
即:x=
6
11
,y=
4
11
,z=
12
11
時,
2x2+3y2+z2取得最小值為
4
11
.…(10分)
點評:A考查與圓有關(guān)的比例線段的應(yīng)用,B考查矩陣與變換的應(yīng)用,C考查極坐標與參數(shù)方程的應(yīng)用,D考查柯西不等式的應(yīng)用,解題時要認真審題,仔細解答,注意等價轉(zhuǎn)化思想的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答題紙指定區(qū)域內(nèi) 作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D、E.求∠DAC的度數(shù)與線段AE的長.
B.已知二階矩陣A=
2a
b0
屬于特征值-1的一個特征向量為
1
-3
,求矩陣A的逆矩陣.

C.已知極坐標系的極點在直角坐標系的原點,極軸與x軸的正半軸重合,曲線C的極坐標方程ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈{R}).試求曲線C上點M到直線l的距離的最大值.
D.(1)設(shè)x是正數(shù),求證:(1+x)(1+x2)(1+x3)≥8x3;
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請給出證明;如果不成立,請舉出一個使它不成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.
A選修4-1:幾何證明選講
如圖,延長⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點,過點B作DE的垂線,垂足為點C.
求證:∠ACB=
1
3
∠OAC.
B選修4-2:矩陣與變換
已知矩陣A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C選修4-3:坐標系與參數(shù)方程
已知橢圓C的極坐標方程為ρ2=
a
3cos2θ+4sin2θ
,焦距為2,求實數(shù)a的值.
D選修4-4:不等式選講
已知函數(shù)f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c為實數(shù))的最小值為m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
N點的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實數(shù)a,b的值;
C.選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓C的極坐標方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設(shè)a,b,c均為正實數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,PA切⊙O于點A,D為PA的中點,過點D引割線交⊙O于B、C兩點.求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
設(shè)M=
.
10
02
.
,N=
.
1
2
0
01
.
,試求曲線y=sinx在矩陣MN變換下的曲線方程.
C.選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓C的極坐標方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 選做題(在A、B、C、D四小題中只能選做兩題,并將選作標記用2B鉛筆涂黑,每小題10分,共20分,請在答題指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟).
A、(選修4-1:幾何證明選講)
如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,求證:AB2=AE•AD
B、(選修4-2:矩形與變換)
已知a,b實數(shù),如果矩陣M=
1a
b2
所對應(yīng)的變換將直線3x-y=1變換成x+2y=1,求a,b的值.
C、(選修4-4,:坐標系與參數(shù)方程)
設(shè)M、N分別是曲線ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的動點,判斷兩曲線的位置關(guān)系并求M、N間的最小距離.
D、(選修4-5:不等式選講)
設(shè)a,b,c是不完全相等的正數(shù),求證:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

同步練習(xí)冊答案