1.已知橢圓$\frac{x^2}{25}+\frac{y^2}{b^2}$=1(0<b<5)的離心率$\frac{4}{5}$,則b的值等于( 。
A.1B.3C.6D.8

分析 由橢圓的性質(zhì)可知:橢圓焦點(diǎn)在x軸上,a=5,橢圓的離心率e=$\frac{c}{a}$=$\frac{4}{5}$,即c=4,求得由b2=a2-c2=9,即可求得b的值.

解答 解:由題意可知:橢圓$\frac{x^2}{25}+\frac{y^2}{b^2}$=1(0<b<5)焦點(diǎn)在x軸上,a=5,
由橢圓的離心率e=$\frac{c}{a}$=$\frac{4}{5}$,即c=4,
由b2=a2-c2=9,即b=3,
∴b的值等于3,
故選:B.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),考查橢圓性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在三棱錐S-ABC中,SA⊥平面ABC,點(diǎn)D是SC的中點(diǎn),且平面ABD⊥平面SAC
(Ⅰ)求證:AB⊥平面SAC
(Ⅱ)若SA=2AB=3AC,求二面角S-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.將一骰子拋擲兩次,所得向上點(diǎn)數(shù)分別為m和n,則函數(shù)y=x2-2(2m-n)x+1在[6,+∞)上為增函數(shù)的概率是( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{5}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.$\sqrt{si{n}^{2}480°}$等于(  )
A.±$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.關(guān)于函數(shù)f(x)=cos2x-2$\sqrt{3}$sinxcosx+1,下列命題:
①函數(shù)f(x)的最小正周期是π;
②函數(shù)f(x)的圖象關(guān)于點(diǎn)($\frac{π}{12}$,0)成中心對(duì)稱(chēng)圖象;
③若存在x1,x2有x1-x2=π時(shí),f(x1)=f(x2)成立;
④將函數(shù)f(x)的圖象向右平移$\frac{5π}{6}$個(gè)單位后將與y=2sin2x+1的圖象重合.
其中正確的命題序號(hào)①③(注:把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知三角形的三個(gè)頂點(diǎn)A(-5,0),B(3,-3),C(0,2),求AB邊所在直線(xiàn)的方程及該邊上高線(xiàn)所在直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)若$log_a^{\;}\frac{3}{4}$<1(a>1),求實(shí)數(shù)a的取值范圍;
(2)已知a=log32,那么log38-2log36用a表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知3sinα+4cosα=5.
(1)求tanα的值;
(2)求$cot(\frac{3π}{2}-α)•{sin^2}(\frac{3π}{2}+α)$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,AB和AC分別是⊙O的弦和切線(xiàn),A為切點(diǎn),AD為∠BAC的平分線(xiàn)且交⊙O于D,BD的延長(zhǎng)線(xiàn)與AC交于C,若AC=6,AD=5,則AB=7.5.

查看答案和解析>>

同步練習(xí)冊(cè)答案