精英家教網 > 高中數學 > 題目詳情
已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點為F1(-c,0),F2(c,0),點Q是橢圓外的動點,滿足|
F1Q
|=2a
,點P是線段F1Q與該橢圓的交點
(1)若點P的橫坐標為
a
2
,證明:|
F1P
|=a+
c
2

(2)若存在點Q,使得△F1QF2的面積等于b2,求橢圓離心率的取值范圍.
(1)證明:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左準線方程為x=-
a2
c

∵點P的橫坐標為
a
2
,
∴由橢圓的定義可知,
|
F1P
|
|
a
2
+
a2
c
|
=
c
a
,
|
F1P
|=a+
c
2

(2)設Q(x,y),則
|
F1Q
|=2a
,∴(x+c)2+y2=4a2
∴|y|≤2a
∵存在點Q,使得△F1QF2的面積等于b2
1
2
•2c•|y|=b2

|y|=
b2
c

b2
c
≤2a

∴e2+2e-1≥0
e≥
2
-1
e≤-
2
-1

∵0<e<1
2
-1≤e<1
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F2與拋物線y2=4x的焦點重合,過F2作與x軸垂直的直線l與橢圓交于S、T兩點,與拋物線交于C、D兩點,且
|CD|
|ST|
=2
2

(Ⅰ)求橢圓E的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓E相交于兩點A,B,設P為橢圓E上一點,且滿足
OA
+
OB
=t
OP
(O為坐標原點),當|
PA
-
PB
|<
2
5
3
時,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線方程為y=±
3
x
,O為坐標原點,點M(
5
,
3
)
在雙曲線上.
(1)求雙曲線C的方程;
(2)若直線l與雙曲線交于P,Q兩點,且
OP
OQ
,求|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,焦點F1、F2在x軸上,長軸A1A2的長為4,左準線l與x軸的交點為M,
MA1
=2
A1F1

(I)求橢圓的標準方程;
(Ⅱ)過點M的直線l'與橢圓交于C、D兩點,若
OC
OD
=0
,求直線l'的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

雙曲線C與橢圓
x2
8
+
y2
4
=1
有相同的焦點,直線y=
3
x
為C的一條漸近線.
(1)求雙曲線C的方程;
(2)過點P(0,4)的直線l,交雙曲線C于A、B兩點,交x軸于Q點(Q點與C的頂點不重合),當
PQ
=λ1
QA
=λ2
QB
,且λ1+λ2=-
8
3
時,求Q點的坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

直線l過拋物線y2=2px(p>0)的焦點,且交拋物線于A,B兩點,交其準線于C點,已知|AF|=4,
CB
=3
BF
,則p=( 。
A.2B.
4
3
C.
8
3
D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為(
3
,0)
(1)求雙曲線C的方程;
(2)若直線l:y=kx+
2
與雙曲線C恒有兩個不同的交點A和B,且
OA
OB
>2(其中O為原點).求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
,其左、右焦點分別為F1,F2,點P是坐標平面內一點,且|OP|=
7
2
,
PF1
PF2
=
3
4
(O為坐標原點).
(1)求橢圓C的方程;
(2)若過F1的直線L與該橢圓相交于M、N兩點,且|
F1M
|=2|
F1N
|
,求直線L的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,橢圓Γ的中心在坐標原點O,過右焦點F(1,0)且垂直于橢圓對稱軸的弦MN的長為3.
(1)求橢圓Γ的方程;
(2)直線l經過點O交橢圓Γ于P、Q兩點,NP=NQ,求直線l的方程.

查看答案和解析>>

同步練習冊答案