【題目】(本小題滿分13分)
如圖5,已知點(diǎn)是圓心為半徑為1的半圓弧上從點(diǎn)數(shù)起的第一個(gè)三等分點(diǎn),是直徑,,平面,點(diǎn)是的中點(diǎn).
(1)求二面角的余弦值.
(2)求點(diǎn)到平面的距離.
【答案】(1)
(2)
【解析】
試題分析:想求二面角的余弦值,得需要建立適當(dāng)?shù)淖鴺?biāo)系,根據(jù)題中所給的條件,可以得出從一個(gè)起點(diǎn)出發(fā)的三條互相垂直的直線,符合建立坐標(biāo)系的條件,求出相應(yīng)的面的法向量,從而得出二面角的余弦值,對(duì)于第二問(wèn),可以通過(guò)三棱錐的體積相等來(lái)處理,也可以通過(guò)某個(gè)向量在法向量上的投影的問(wèn)題來(lái)解決.
試題解析:
解 :(1)∵是圓心為半徑為1的半圓弧上
從點(diǎn)數(shù)起的第一個(gè)三等分點(diǎn),∴∠AOC=60,
∴是等邊三角形,
∴. (1分)
∵C是圓周上的點(diǎn),AB是直徑,∴,∴ (2分)
又平面,∴兩兩垂直. 以點(diǎn)為坐標(biāo)原點(diǎn),、、分別為、、軸的正向,建立空間直角坐標(biāo)系,則,,,,,, (3分)
于是,,,. (4分)
設(shè)為平面的法向量,為平面的法向量,
,,取得. (5分)
,,
取得. (6分)
, (7分)
因此,二面角的余弦值是. (8分)
(2)方法一:由(1)知 (9分)
設(shè)為平面的法向量,則
,即,取得. (10分)
設(shè)向量和所成的角為,則(12分)
設(shè)點(diǎn)到平面的距離為,則. (13分)
方法二:由(1)知,
因?yàn)橹本平面,所以,,,
于是,,
.
因?yàn)?/span>,點(diǎn)是的中點(diǎn),所以. (9分)
因此,, (10分)
從而,, (11分)
. (12分)
因?yàn)椋?/span>,設(shè)點(diǎn)到平面的距離為,則有,即,于是,. (13分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中, 為自然對(duì)數(shù)的底數(shù).
(1)設(shè)是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次戰(zhàn)役中,狙擊手A受命射擊敵機(jī),若要擊落敵機(jī),需命中機(jī)首2次或命中機(jī)中3次或命中機(jī)尾1次,已知A每次射擊,命中機(jī)首、機(jī)中、機(jī)尾的概率分別為0.2、0.4、0.1,未命中敵機(jī)的概率為0.3,且各次射擊相互獨(dú)立。若A至多射擊兩次,則他能擊落敵機(jī)的概率為( )
A. 0.23 B. 0.2 C. 0.16 D. 0.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知6只小白鼠有1只被病毒感染,需要通過(guò)對(duì)其化驗(yàn)病毒來(lái)確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).
(1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.
(2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要體驗(yàn)費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大西洋鮭魚(yú)每年都要逆流而上,游回產(chǎn)地產(chǎn)卵.記鮭魚(yú)的游速為,鮭魚(yú)的耗氧量的單位數(shù)為,研究中發(fā)現(xiàn)與成正比,且當(dāng)時(shí), .
(1)求出關(guān)于的函數(shù)解析式;
(2)計(jì)算一條鮭魚(yú)的游速是時(shí)耗氧量的單位數(shù);
(3)當(dāng)鮭魚(yú)的游速增加時(shí),其耗氧量是原來(lái)的幾倍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列對(duì)應(yīng)是否為集合A到集合B的函數(shù).
(1)A=R,B={x|x>0},f:x→y=|x|;
(2)A=Z,B=Z,f:x→y=x2;
(3)A=Z,B=Z,f:x→y=;
(4)A={x|-1≤x≤1},B={0},f:x→y=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面底面,且是以為底的等腰三角形.
(Ⅰ)證明:
(Ⅱ)若四棱錐的體積等于.問(wèn):是否存在過(guò)點(diǎn)的平面分別交,于點(diǎn),使得平面平面?若存在,求出的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)家劉徽是公元三世紀(jì)世界上最杰出的數(shù)學(xué)家,他在《九章算術(shù)圓田術(shù)》注中,用割圓術(shù)證明了圓面積的精確公式,并給出了計(jì)算圓周率的科學(xué)方法.所謂“割圓術(shù)”,即通過(guò)圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的周長(zhǎng)無(wú)限接近圓的周長(zhǎng),進(jìn)而來(lái)求得較為精確的圓周率(圓周率指圓周長(zhǎng)與該圓直徑的比率).劉徽計(jì)算圓周率是從正六邊形開(kāi)始的,易知圓的內(nèi)接正六邊形可分為六個(gè)全等的正三角形,每個(gè)三角形的邊長(zhǎng)均為圓的半徑
,此時(shí)圓內(nèi)接正六邊形的周長(zhǎng)為
,此時(shí)若將圓內(nèi)接正六邊形的周長(zhǎng)等同于圓的周長(zhǎng),可得圓周率為3,當(dāng)用正二十四邊形內(nèi)接于圓時(shí),按照上述算法,可得圓周率為__________.(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上的點(diǎn),直線與(為坐標(biāo)原點(diǎn))的斜率之積為.若動(dòng)點(diǎn)滿足,試探究是否存在兩個(gè)定點(diǎn),使得為定值?若存在,求的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com