【題目】已知正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,給出下列四個(gè)命題: ①對(duì)角線AC1被平面A1BD和平面B1 CD1三等分;
②正方體的內(nèi)切球、與各條棱相切的球、外接球的表面積之比為1:2:3;
③以正方體的頂點(diǎn)為頂點(diǎn)的四面體的體積都是 ;
④正方體與以A為球心,1為半徑的球在該正方體內(nèi)部部分的體積之比為6:π
其中正確命題的序號(hào)為

【答案】①②④
【解析】解:∵正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1, 故對(duì)角線AC1=
棱錐A﹣A1BD的體積為: ×1×1×1=
平面A1BD的面積為:
故A到平面A1BD的距離為: ,
故對(duì)角線AC1被平面A1BD和平面B1 CD1三等分,
即①正確;
正方體的內(nèi)切球、與各條棱相切的球、外接球的半徑分別為: , ,
故正方體的內(nèi)切球、與各條棱相切的球、外接球的表面積之比為1:2:3,
故②正確;
以正方體的頂點(diǎn)為頂點(diǎn)的四面體的體積為 ;
故③錯(cuò)誤;
以A為球心,1為半徑的球在該正方體內(nèi)部部分的體積為 = π
故正方體與以A為球心,1為半徑的球在該正方體內(nèi)部部分的體積之比為6:π
故④正確;
所以答案是:①②④
【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的動(dòng)點(diǎn).若CE∥平面PAB,則三棱錐C﹣ABE的體積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓E的右焦點(diǎn),直線AF的斜率為 ,O為坐標(biāo)原點(diǎn)
(1)求E的方程
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn),問(wèn):是否存在直線l,使以PQ為直徑的圓經(jīng)過(guò)點(diǎn)原點(diǎn)O,若存在,求出對(duì)應(yīng)直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是(
A.奇函數(shù)f(x)的圖象經(jīng)過(guò)(0,0)點(diǎn)
B.y=|x+1|+|x﹣1|(x∈(﹣4,4])是偶函數(shù)
C.冪函數(shù)y=x 過(guò)(1,1)點(diǎn)
D.y=sin2x(x∈[0,5π])是以π為周期的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中點(diǎn). (Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的程序框圖所表示的算法功能是輸出(
A.使1×2×4×6××n≥2017成立的最小整數(shù)n
B.使1×2×4×6××n≥2017成立的最大整數(shù)n
C.使1×2×4×6××n≥2017成立的最小整數(shù)n+2
D.使1×2×4×6××n≥2017成立的最大整數(shù)n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=x26x+5. (Ⅰ)求 的值;
(Ⅱ)若x∈[2,6],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知R(x0 , y0)是橢圓C: =1上的一點(diǎn),從原點(diǎn)O向圓R:(x﹣x02+(y﹣y02=8作兩條切線,分別交橢圓于點(diǎn)P,Q.
(1)若R點(diǎn)在第一象限,且直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,并記為k1 , k2 , 求k1k2的值;
(3)試問(wèn)OP2+OQ2是否為定值?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fk(x)=ax+ka﹣x , (k∈Z,a>0且a≠1). (Ⅰ)若f1(1)=3,求f1 )的值;
(Ⅱ)若fk(x)為定義在R上的奇函數(shù),且a>1,是否存在實(shí)數(shù)λ,使得fk(cos2x)+fk(2λsinx﹣5)<0對(duì)任意x∈[0, ]恒成立,若存在,請(qǐng)求出實(shí)數(shù)k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案