【題目】若不等式(a﹣2)x2+2(a﹣2)x﹣4<0對一切x∈R恒成立,則實數(shù)a取值的集合( )
A.{a|a≤2}
B.{a|﹣2<a<2}
C.{a|﹣2<a≤2}
D.{a|a≤﹣2}
【答案】C
【解析】解:①a=2時,不等式化為﹣4<0對一切x∈R恒成立,因此a=2滿足題意; ②a≠2時,要使不等式(a﹣2)x2+2(a﹣2)x﹣4<0對一切x∈R恒成立,則必有 解得﹣2<a<2.
綜上①②可知:實數(shù)a取值的集合是{a|﹣2<a≤2}.
故選C.
【考點精析】解答此題的關(guān)鍵在于理解解一元二次不等式的相關(guān)知識,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3x , x∈[﹣1,1],函數(shù)g(x)=[f(x)]2﹣2af(x)+3.
(1)當(dāng)a=0時,求函數(shù)g(x)的值域;
(2)若函數(shù)g(x)的最小值為h(a),求h(a)的表達(dá)式;
(3)是否存在實數(shù)m,n同時滿足下列兩個條件:①m>n>3;②當(dāng)h(a)的定義域為[n,m]時,值域為[n2 , m2]?若存在,求出m,n的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點P(4,﹣1)且與直線3x﹣4y+6=0垂直的直線方程是( )
A.4x+3y﹣13=0
B.4x﹣3y﹣19=0
C.3x﹣4y﹣16=0
D.3x+4y﹣8=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F為棱AD、AB的中點.
(Ⅰ)求證:EF∥平面CB1D1;
(Ⅱ)求證:平面CAA1C1⊥平面CB1D1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,正三角形所在平面與菱形所在的平面垂直, 平面,且.
(1)判斷直線平面的位置關(guān)系,并說明理由;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+ax(x∈R).
(1)證明:當(dāng) a>2時,f(x)在 R上是增函數(shù);
(2)若函數(shù)f(x)存在兩個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為[-1,5],部分對應(yīng)值如下表, 的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于的命題:
-1 | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
①函數(shù)的極大值點為0,4;
②函數(shù)在[0,2]上是減函數(shù);
③如果當(dāng)時, 的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時,函數(shù)有4個零點.
其中正確命題的序號是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com