【題目】已知函數(shù)(其中且).
(1)判斷函數(shù)的奇偶性并證明;
(2)若,求的值域.
【答案】(1)非奇非偶函數(shù),見(jiàn)解析; (2)當(dāng)時(shí),值域?yàn)?/span>;當(dāng)時(shí),值域?yàn)?/span>.
【解析】
(1)先求出函數(shù)的定義域,然后結(jié)合和的關(guān)系式,即可作出判定與證明.
(2)分和可得原函數(shù)的單調(diào)性,結(jié)合函數(shù)的單調(diào)性,即可得到函數(shù)的值域.
(1)由題意,函數(shù)(其中且)的定義域?yàn)?/span>,
又由,
若為偶函數(shù),則恒成立,故即,矛盾;
若為奇函數(shù),則恒成立,故,
整理得到;,此方程最多有兩解,矛盾,
所以函數(shù)(實(shí)數(shù)且)為非奇非偶函數(shù).
(2)由題意,當(dāng)時(shí),可得函數(shù)為單調(diào)遞減函數(shù),
當(dāng)時(shí),,且,所以函數(shù)的值域?yàn)?/span>;
當(dāng)時(shí),可得函數(shù)為單調(diào)遞增函數(shù),
當(dāng)時(shí),,所以函數(shù)的值域?yàn)?/span>,
所以當(dāng)時(shí),函數(shù)的值域?yàn)?/span>;
當(dāng)時(shí),函數(shù)的值域?yàn)?/span>.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩條直線l1:y=m 和l2:y(m>0),直線l1與函數(shù)y=|log2x|的圖象從左至右相交于點(diǎn)A,B,直線l2與函數(shù)y=|log2x|的圖象從左至右相交于C,D.記線段AC和BD在X軸上的投影長(zhǎng)度分別為a 和b.當(dāng)m變化時(shí),的最小值為()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A市積極倡導(dǎo)學(xué)生參與綠色環(huán)保活動(dòng),其中代號(hào)為“環(huán)保衛(wèi)士——12369”的綠色環(huán);顒(dòng)小組對(duì)2014年1月——2014年12月(一年)內(nèi)空氣質(zhì)量指數(shù)進(jìn)行監(jiān)測(cè),下表是在這一年隨機(jī)抽取的100天的統(tǒng)計(jì)結(jié)果:
指數(shù)API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中重度污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(1)若A市某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失P(單位:元)與空氣質(zhì)量指數(shù)(記為t)的關(guān)系
為:,在這一年內(nèi)隨機(jī)抽取一天,估計(jì)該天經(jīng)濟(jì)損失元的概率;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季節(jié),其中有8天為重度污染,完成列聯(lián)表,并判斷是
否有的把握認(rèn)為A市本年度空氣重度污染與供暖有關(guān)?
非重度污染 | 重度污染 | 合計(jì) | |
供暖季 | |||
非供暖季節(jié) | |||
合計(jì) | 100 |
下面臨界值表供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | p>5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】非空集合關(guān)于運(yùn)算滿足:①對(duì)任意,都有;②存在使得對(duì)于一切都有,則稱(chēng)是關(guān)于運(yùn)算的融洽集,現(xiàn)有下列集合與運(yùn)算:①是非負(fù)整數(shù)集,:實(shí)數(shù)的加法;②是偶數(shù)集,:實(shí)數(shù)的乘法;③是所有二次三項(xiàng)式構(gòu)成的集合,:多項(xiàng)式的乘法; ④,:實(shí)數(shù)的乘法;其中屬于融洽集的是________(請(qǐng)?zhí)顚?xiě)編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng).某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 |
人均純收入 | 5 | 6 | 7 | 8 | 10 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)2020年該地區(qū)農(nóng)村居民家庭人均純收入約為多少千元?
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車(chē)”在很多城市相繼出現(xiàn).某運(yùn)營(yíng)公司為了了解某地區(qū)用戶對(duì)其所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了40個(gè)用戶,得到用戶的滿意度評(píng)分如下:
用戶編號(hào) | 評(píng)分 | 用戶編號(hào) | 評(píng)分 | 用戶編號(hào) | 評(píng)分 | 用戶編號(hào) | 評(píng)分 |
01 | 78 | 11 | 88 | 21 | 79 | 31 | 93 |
02 | 73 | 12 | 86 | 22 | 83 | 32 | 78 |
03 | 81 | 13 | 95 | 23 | 72 | 33 | 75 |
04 | 92 | 14 | 76 | 24 | 74 | 34 | 81 |
05 | 95 | 15 | 97 | 25 | 91 | 35 | 84 |
06 | 85 | 16 | 78 | 26 | 66 | 36 | 77 |
07 | 79 | 17 | 88 | 27 | 80 | 37 | 81 |
08 | 84 | 18 | 82 | 28 | 83 | 38 | 76 |
09 | 63 | 19 | 76 | 29 | 74 | 39 | 85 |
10 | 86 | 20 | 89 | 30 | 82 | 40 | 89 |
現(xiàn)用隨機(jī)數(shù)法讀取用戶編號(hào),且從第2行第6列的數(shù)開(kāi)始向右讀,從40名用戶中抽取容量為10的樣本.(下面是隨機(jī)數(shù)表第1行第至第5行)
95 33 95 22 00 18 74 72 00 18 38 79 58 69 32
81 76 80 16 92 04 80 44 25 39 91 03 69 79 83
54 31 62 27 32 94 07 53 89 35 96 35 23 79 18
05 98 90 07 35 46 40 62 98 80 54 97 20 56 95
(1)請(qǐng)你列出抽到的10個(gè)樣本的評(píng)分?jǐn)?shù)據(jù);
(2)計(jì)算所抽到的10個(gè)樣本的均值和方差;
(3)在(2)條件下,若用戶的滿意度評(píng)分在之間,則滿意度等級(jí)為“級(jí)”.試應(yīng)用樣本估計(jì)總體的思想,根據(jù)所抽到的10個(gè)樣本,估計(jì)該地區(qū)滿意度等級(jí)為“級(jí)”的用戶所占的百分比是多少?(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AB=AD,BD⊥CD,點(diǎn)E、F分別是棱BC、BD的中點(diǎn).
(1)求證:EF∥平面ACD;
(2)求證:AE⊥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五面體A﹣BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四邊形BCC1B1是矩形,二面角A﹣BC﹣C1為直二面角.
(1)D在AC上運(yùn)動(dòng),當(dāng)D在何處時(shí),有AB1//平面BDC1,并且說(shuō)明理由;
(2)當(dāng)AB1//平面BDC1時(shí),求二面角C﹣BC1﹣D余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com