證明函數(shù)f(x)=x+在(0,1)上是減函數(shù).

 

【答案】

根據(jù)函數(shù)單調(diào)性的定義法,設(shè)出任意兩個(gè)變量,得到對(duì)應(yīng)的函數(shù)值的差,定號(hào),下結(jié)論。

【解析】

試題分析:證明:(1)設(shè)0<x1<x2<1,則x2-x1>0,

f(x2)-f(x1)=(x2)-(x1)

=(x2-x1)+()=(x2-x1)+

=(x2-x1)(1-)=,

若0<x1<x2<1,則x1x2-1<0,

故f(x2)-f(x1)<0,∴f(x2)<f(x1).

∴f(x)=x+在(0,1)上是減函數(shù).

考點(diǎn):函數(shù)的單調(diào)性

點(diǎn)評(píng):證明函數(shù)的單調(diào)性一般運(yùn)用定義法來(lái)加以證明,作差變形,定號(hào),下結(jié)論。屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:安徽省蚌埠二中2011-2012學(xué)年高二第一次質(zhì)檢數(shù)學(xué)文科試題 題型:044

已知函數(shù)f(x)=x+,且f(1)=2.

(1)求a的值;

(2)判斷函數(shù)f(x)的奇偶性(須有證明過(guò)程);

(3)求f(x)在區(qū)間(0,+∞)的單調(diào)性(須有證明過(guò)程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省鄭州市2007年高中畢業(yè)班第二次質(zhì)量預(yù)測(cè)數(shù)學(xué)理 題型:044

已知函數(shù)f(x)=x-ln(x+m)在定義域內(nèi)連續(xù).

(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;

(Ⅱ)當(dāng)m為何值時(shí)f(x)≥0恒成立?

(Ⅲ)給出定理:若函數(shù)g(x)在[a,b]上連續(xù),并具有單調(diào)性,且滿足g(a)與g(b)異號(hào),則方程g(x)=0在[a,b]內(nèi)有唯一實(shí)根.試用上述定理證明:當(dāng)m>1時(shí),方程f(x)=0,在[1-m,em-m]內(nèi)有唯一實(shí)根(e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年人教A版高中數(shù)學(xué)必修1單調(diào)性與最大(。┲稻毩(xí)卷(二)(解析版) 題型:解答題

證明函數(shù)f(x)=x+在(0,1)上是減函數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明函數(shù)f(x)=x+在(0,1)上是減函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案