【題目】如圖所示,Rt△AOB的直角邊OA在x軸上,OA=2,AB=1,將Rt△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到,拋物線經(jīng)過(guò)B、D兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)連接BD,點(diǎn)P是拋物線上一點(diǎn),直線OP把△BOD的周長(zhǎng)分成相等的兩部分,求點(diǎn)P的坐標(biāo).
【答案】(1);(2)或.
【解析】
(1)由旋轉(zhuǎn)性質(zhì)可得CD=AB=1,OA=OC=2,從而得到點(diǎn)B,D的坐標(biāo),代入解析式即可得出答案;
(2)由直線OP把的周長(zhǎng)分成相等的兩部分,且OB=OD,知DQ=BQ,即點(diǎn)Q為BD的中點(diǎn),從而得到點(diǎn)Q的坐標(biāo),求得直線OP解析式,代入拋物線解析式可得點(diǎn)P的坐標(biāo).
(1)∵Rt△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到Rt△COD,
∴CD=AB=1,OA=OC=2,則點(diǎn)B(2,1),D(﹣1,2),代入解析式,
得,解得,
∴二次函數(shù)的解析式為y=﹣x2+x+.
(2)如圖:
∵OA=2,AB=1,∴B(2,1).
∵直線OP把△BOD的周長(zhǎng)分成相等的兩部分,且OB=OD,
∴DQ=BQ,即點(diǎn)Q為BD的中點(diǎn),D(﹣1,2),
∴點(diǎn)Q坐標(biāo)為(,).
設(shè)直線OP解析式為y=kx,
將點(diǎn)Q坐標(biāo)代入,得k=,解得k=3,
∴直線OP的解析式為y=3x,
代入y=﹣x2+x+,得﹣x2+x+=3x,
解得x=1或x=﹣4.
當(dāng)x=1時(shí),y=3;當(dāng)x=﹣4時(shí),y=﹣12.
∴點(diǎn)P坐標(biāo)為(1,3)或(﹣4,﹣12).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中, 平面. , , , , 分別為和的中點(diǎn), 為側(cè)棱上的動(dòng)點(diǎn).
()求證:平面平面.
()若為線段的中點(diǎn),求證: 平面.
()試判斷直線與平面是否能夠垂直.若能垂直,求的值,若不能垂直,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)p:,q:x2+y2>r2(r>0),若p是q的充分不必要條件,求實(shí)數(shù)r的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】箱中有6張卡片,分別標(biāo)有1,2,3,…,6。
(1)抽取一張記下號(hào)碼后不放回,再抽取一張記下號(hào)碼,求兩次之和為偶數(shù)的概率;
(2)抽取一張記下號(hào)碼后放回,再抽取一張記下號(hào)碼,求兩個(gè)號(hào)碼中至少一個(gè)為偶數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的左頂點(diǎn)為(﹣2,0),離心率為 .
(1)求橢圓C的方程;
(2)已知直線l過(guò)點(diǎn)S(4,0),與橢圓C交于P,Q兩點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為P′,P′與Q兩點(diǎn)的連線交x軸于點(diǎn)T,當(dāng)△PQT的面積最大時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】先后拋擲兩枚質(zhì)地均勻的骰子各一次,設(shè)出現(xiàn)的點(diǎn)數(shù)之和是12,11,10的概率依次是,,,則( )
A. =< B. <<
C. <= D. =<
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有關(guān)于x的一元二次方程=0.
(1)若a是從集合A={x∈Z|0≤x≤3}中任取一個(gè)元素,b是從集合B={x∈Z|0≤x≤2}中任取一個(gè)元素,求方程=0恰有兩個(gè)不相等實(shí)根的概率;
(2) 若a是從集合A={x|0≤x≤3}中任取一個(gè)元素,b是從集合B={x|0≤x≤2}中任取一個(gè)元素,求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 為正實(shí)數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若方程在區(qū)間上有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列4個(gè)命題,其中正確命題的個(gè)數(shù)是( )
①計(jì)算:9192除以100的余數(shù)是1;
②命題“x>0,x﹣lnx>0”的否定是“x>0,x﹣lnx≤0”;
③y=tanax(a>0)在其定義域內(nèi)是單調(diào)函數(shù)而且又是奇函數(shù);
④命題p:“|a|+|b|≤1”是命題q:“對(duì)任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要條件.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com