【題目】某貨運(yùn)員擬運(yùn)送甲、乙兩種貨物,每件貨物的體積、重量、可獲利潤(rùn)如表所示:
體積(升/件) | 重量(公斤/件) | 利潤(rùn)(元/件) | |
甲 | 20 | 10 | 8 |
乙 | 10 | 20 | 10 |
在一次運(yùn)輸中,貨物總體積不超過(guò)110升,總重量不超過(guò)100公斤,那么在合理的安排下,一次運(yùn)輸獲得的最大利潤(rùn)為( )
A.65元
B.62元
C.60元
D.56元
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x)滿足下面三個(gè)條件:
①對(duì)任意正數(shù)a,b,都有f(a)+f(b)=f(ab);
②當(dāng)x>1時(shí),f(x)<0;
③f(2)=﹣1
(I)求f(1)和 的值;
(II)試用單調(diào)性定義證明:函數(shù)f(x)在(0,+∞)上是減函數(shù);
(III)求滿足f(log4x)>2的x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,ABCD為矩形,△PAD為等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點(diǎn).
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓M過(guò)坐標(biāo)原點(diǎn)O且圓心在曲線 上.
(1)若圓M分別與x軸、y軸交于點(diǎn)A、B(不同于原點(diǎn)O),求證:△AOB的面積為定值;
(2)設(shè)直線 與圓M 交于不同的兩點(diǎn)C,D,且|OC|=|OD|,求圓M的方程;
(3)設(shè)直線 與(Ⅱ)中所求圓M交于點(diǎn)E、F,P為直線x=5上的動(dòng)點(diǎn),直線PE,PF與圓M的另一個(gè)交點(diǎn)分別為G,H,求證:直線GH過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】田忌和齊王賽馬是歷史上有名的故事,設(shè)齊王的三匹馬分別為A、B、C,田忌的三匹馬分別為a、b、c.三匹馬各比賽一次,勝兩場(chǎng)者為獲勝.若這六匹馬比賽的優(yōu)劣程度可以用以下不等式表示:A>a>B>b>C>c. (Ⅰ)如果雙方均不知道對(duì)方馬的出場(chǎng)順序,求田忌獲勝的概率;
(Ⅱ)為了得到更大的獲勝概率,田忌預(yù)先派出探子到齊王處打探實(shí)情,得知齊王第一場(chǎng)必出上等馬.那么,田忌應(yīng)怎樣安排出馬的順序,才能使自己獲勝的概率最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題。
(1)已知直線l經(jīng)過(guò)點(diǎn)P(4,1),且在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)已知直線l經(jīng)過(guò)點(diǎn)P(3,4),且直線l的傾斜角為θ(θ≠90°),若直線l經(jīng)過(guò)另外一點(diǎn)(cosθ,sinθ),求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分16分)已知函數(shù)在處的切線方程為
(1)若= ,求證:曲線上的任意一點(diǎn)處的切線與直線和直線
圍成的三角形面積為定值;
(2)若,是否存在實(shí)數(shù),使得對(duì)于定義域內(nèi)的任意都成立;
(3)在(2)的條件下,若方程有三個(gè)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)為1,前n項(xiàng)和Sn與an之間滿足an= (n≥2,n∈N*)
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)存在正整數(shù)k,使(1+S1)(1+S1)…(1+Sn)≥k 對(duì)于一切n∈N*都成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間的最值;
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù);
(3)當(dāng)時(shí),求的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com