用反證法證明命題“若都是正數(shù),則三數(shù)中至少有一個(gè)不小于”,提出的假設(shè)是( )
A.不全是正數(shù) |
B.至少有一個(gè)小于 |
C.都是負(fù)數(shù) |
D.都小于2 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
用反證法證明命題:“一個(gè)三角形中不能有兩個(gè)直角”的過程歸納為以下三個(gè)步驟:
①,這與三角形內(nèi)角和為相矛盾,不成立;②所以一個(gè)三角形中不能有兩個(gè)直角;③假設(shè)三角形的三個(gè)內(nèi)角、、中有兩個(gè)直角,不妨設(shè),正確順序的序號(hào)為
A.①②③ | B.③①② | C.①③② | D.②③① |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
下列三句話按三段論的模式排列順序正確的是( )
① 2013不能被2整除; ② 一切奇數(shù)都不能被2整除; ③ 2013是奇數(shù);
A.①②③ | B.②①③ | C.②③① | D.③②① |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在平面上,若兩個(gè)正三角形的邊長比為1:2.則它們的面積之比為1:4.類似地,在空間中,若兩個(gè)正四面體的棱長比為1:2,則它們的體積比為( )
A.1:2 | B.1:4 | C.1:6 | D.1:8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
根據(jù)偶函數(shù)定義可推得“函數(shù)在上是偶函數(shù)”的推理過程是( )
A.歸納推理 | B.類比推理 | C.演繹推理 | D.非以上答案 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
觀察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
…
照此規(guī)律,第n個(gè)等式為 _________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂
巢的截面圖. 其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,
以表示第幅圖的蜂巢總數(shù),則=_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
請(qǐng)閱讀下列材料:若兩個(gè)正實(shí)數(shù)a1,a2滿足a12+a22=1,那么a1+a2≤.
證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因?yàn)閷?duì)一切實(shí)數(shù)x,恒有f(x)≥0,所以Δ≤0,從而得4(a1+a2)2-8≤0,所以a1+a2≤.
根據(jù)上述證明方法,若n個(gè)正實(shí)數(shù)滿足a12+a22+…+an2=1時(shí),你能得到的結(jié)論為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在用數(shù)學(xué)歸納法證明凸n邊形內(nèi)角和定理時(shí),第一步應(yīng)驗(yàn)證( )
A.n=1時(shí)成立 | B.n=2時(shí)成立 |
C.n=3時(shí)成立 | D.n=4時(shí)成立 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com