【題目】設a≥0,f(x)=x﹣1﹣ln2x+2alnx(x>0). (Ⅰ)令F(x)=xf′(x),討論F(x)在(0,+∞)內(nèi)的單調(diào)性并求極值;
(Ⅱ)求證:當x>1時,恒有x>ln2x﹣2alnx+1.

【答案】解:(Ⅰ)根據(jù)求導法則有 , 故F(x)=xf'(x)=x﹣2lnx+2a,x>0,
于是
∴知F(x)在(0,2)內(nèi)是減函數(shù),在(2,+∞)內(nèi)是增函數(shù),
所以,在x=2處取得極小值F(2)=2﹣2ln2+2a.
(Ⅱ)證明:由a≥0知,F(xiàn)(x)的極小值F(2)=2﹣2ln2+2a>0.
于是知,對一切x∈(0,+∞),恒有F(x)=xf'(x)>0.
從而當x>0時,恒有f'(x)>0,故f(x)在(0,+∞)內(nèi)單調(diào)增加.
所以當x>1時,f(x)>f(1)=0,即x﹣1﹣ln2x+2alnx>0.
故當x>1時,恒有x>ln2x﹣2alnx+1.
【解析】(1)先根據(jù)求導法求導數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,求出單調(diào)區(qū)間及極值即可.(2)欲證x>ln2x﹣2a ln x+1,即證x﹣1﹣ln2x+2alnx>0,也就是要證f(x)>f(1),根據(jù)第一問的單調(diào)性即可證得.
【考點精析】關(guān)于本題考查的利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,其離心率為.

(1)求橢圓的方程;

(2)直線相交于兩點,在軸上是否存在點,使為正三角形,若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】宿州某中學N名教師參加“低碳節(jié)能你我他”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
下表是年齡的頻數(shù)分布表:

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數(shù)

25

m

p

75

25


(1)求正整數(shù)m,p,N的值;
(2)用分層抽樣的方法,從第1、3、5組抽取6人,則第1、3、5組各抽取多少人?
(3)在(2)的條件下,從這6人中隨機抽取2人參加學校之間的宣傳交流活動,求恰有1人在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設 ,對任意x∈R,不等式a(cos2x﹣m)+πcosx≥0恒成立,則實數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=﹣ x3+ x2﹣6x+5的單調(diào)增區(qū)間是(
A.(﹣∞,2)和(3,+∞)
B.(2,3)
C.(﹣1,6)
D.(﹣3,﹣2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若f(x)=x3+ax2+bx+c有兩個極值點x1 , x2且f(x1)=x1 , 則關(guān)于x的方程3[(f(x)]2+2af(x)+b=0的不同實根個數(shù)為(
A.2
B.3
C.4
D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x+2)=f(x),當x∈(0,1]時,f(x)=1﹣2|x﹣ |,則函數(shù)g(x)=f[f(x)]﹣ x在區(qū)間[﹣2,2]內(nèi)不同的零點個數(shù)是(
A.5
B.6
C.7
D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):

產(chǎn)量x(千件)

2

3

5

6

成本y(萬元)

7

8

9

12

(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程 = x (其中 = , =
(Ⅱ)預計產(chǎn)量為8千件時的成本.

查看答案和解析>>

同步練習冊答案