【題目】工人月工資y(元)與勞動(dòng)生產(chǎn)率x(千元)變化的回歸方程 , 下列判斷正確的是 ( ) 
①勞動(dòng)生產(chǎn)率為1千元時(shí),工資約為130元 
②勞動(dòng)生產(chǎn)率提高1千元時(shí),月工資約提高80元 
③勞動(dòng)生產(chǎn)率提高1千元時(shí),月工資約提高130元 
④當(dāng)月工資為210元時(shí),勞動(dòng)生產(chǎn)率約為2千元
A.① ② 
B.① ② ④ 
C.② ④ 
D.① ② ③ ④

【答案】B
【解析】∵回歸直線方程為 , ∴勞動(dòng)生產(chǎn)率為1千元時(shí),工資約為130元,故①正確;當(dāng)x增加1時(shí),y要增加80元,∴勞動(dòng)生產(chǎn)率每提高1千元時(shí),工資平均提高80元,故②正確,③錯(cuò)誤;當(dāng)月工資為210元時(shí),即80x+50=210,∴x=2,∴勞動(dòng)生產(chǎn)率約為2千元,故④正確.綜上知,正確的有①②④,故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin+cos , x∈R.
(1)求函數(shù)f(x)的最小正周期,并求函數(shù)f(x)在x∈[﹣2π,2π]上的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換可以得到函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)函數(shù)f(x),如果存在x0≠0使得f(x0)=﹣f(﹣x0),則稱(chēng)(x0 , f(x0))與(﹣x0 , f(﹣x0))為函數(shù)圖象的一組奇對(duì)稱(chēng)點(diǎn).若f(x)=ex﹣a(e為自然數(shù)的底數(shù))存在奇對(duì)稱(chēng)點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,1)
B.(1,+∞)
C.(e,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓內(nèi)接△ABC中,D為BC上一點(diǎn),且△ADC為正三角形,點(diǎn)E為BC的延長(zhǎng)線上一點(diǎn),AE為圓O的切線.
(1)求∠BAE 的度數(shù);
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y(單位:萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70


(1)求回歸直線方程;
(2)試預(yù)測(cè)廣告費(fèi)支出為10萬(wàn)元時(shí),銷(xiāo)售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值不超過(guò)5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有大小相同的紅、黃兩種顏色的球各1個(gè),從中任取1只,有放回地抽取3次. 求:
(1)3只全是紅球的概率;
(2)3只顏色全相同的概率;
(3)3只顏色不全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在空間直角坐標(biāo)系中,已知A(3,0,1)和B(1,0,-3),試問(wèn)
(1)在y軸上是否存在點(diǎn)M,滿(mǎn)足 ?
(2)在y軸上是否存在點(diǎn)M,使△MAB為等邊三角形?若存在,試求出點(diǎn)M坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax﹣4(a∈R)的兩個(gè)零點(diǎn)為x1 , x2 , 設(shè)x1<x2
(1)當(dāng)a>0時(shí),證明:﹣2<x1<0;
(2)若函數(shù)g(x)=x2﹣|f(x)|在區(qū)間(﹣∞,﹣2)和(2,+∞)上均單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案