已知函數(shù)f(x)=ax3-x2+bx+2(a,b,c∈R)且(a≠0)在區(qū)間(-∞,0)上都是增函數(shù),在區(qū)間(0,4)上是減函數(shù).
(Ⅰ)求b的值;
(Ⅱ)求a取值范圍.
分析:(1)先對函數(shù)f(x)求導(dǎo),令f'(0)=0即可得到答案.
(2)將b的值代入函數(shù)f(x)后再求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)與原函數(shù)的增減性的關(guān)系即可得到答案.
解答:解:(I)∵f'(x)=3ax
2-2x+b,
又f(x)在區(qū)間(-∞,0)上是增函數(shù),在區(qū)間(0,4)上是減函數(shù),
∴f'(0)=0,∴b=0.
(II)∵f(x)=ax
3-x
2+c,
得f'(x)=3ax
2-2x,
由f'(x)=3ax
2-2x=0,得
x1=0,x2=.∵f(x)在區(qū)間(-∞,0)上是增函數(shù),在區(qū)間(0,4)上是減函數(shù),
則有a>0,且≥4.∴
0<a≤. 點(diǎn)評:本題主要考查根據(jù)導(dǎo)數(shù)的正負(fù)情況判斷原函數(shù)的單調(diào)性的問題.即當(dāng)導(dǎo)數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.