【題目】已知定義在(0, )上的函數(shù)f(x),f'(x)為其導(dǎo)數(shù),且 恒成立,則(
A. f( )> f(
B. f( )>f( )??
C.f(1)<2f( )sin1
D. f( )<f(

【答案】D
【解析】解:當(dāng)x∈(0, )時(shí),sinx>0,cosx>0,
恒成立,
∴sinxf′(x)﹣cosxf(x)>0恒成立,
令g(x)= ,則g′(x)= >0恒成立,
即g(x)= ,x∈(0, )為增函數(shù),
故g( )>g( ),
f( )<f( ),
故D正確;
故選:D
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

41

47

415

421

430

溫差x/oC

10

11

13

12

8

發(fā)芽數(shù)y/

23

25

30

26

16

(1)從這5天中任選2,若選取的是41日與430日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另3天的數(shù)據(jù),求出關(guān)于的線性回歸方程

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的兩組檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠.

(參考公式,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的圖形是由一個(gè)半徑為2的圓和兩個(gè)半徑為1的半圓組成,它們的圓心分別為O,O1 , O2 . 動(dòng)點(diǎn)P從A點(diǎn)出發(fā)沿著圓弧按A→O→B→C→A→D→B的路線運(yùn)動(dòng)(其中A,O1 , O,O2 , B五點(diǎn)共線),記點(diǎn)P運(yùn)動(dòng)的路程為x,設(shè)y=|O1P|2 , y與x的函數(shù)關(guān)系為y=f(x),則y=f(x)的大致圖象是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖可能是下列哪個(gè)函數(shù)的圖象(

A.y=2x﹣x2﹣1
B.y=
C.y=(x2﹣2x)ex
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列結(jié)論:

(1)命題 為真命題 ;

(2)設(shè) ,,則 p q 的充分不必要條件 ;

(3)命題:若,則,其否命題是假命題;

(4)非零向量滿足,則的夾角為.

其中正確的結(jié)論有(

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足向量 =(cosA,cosB), =(a,2c﹣b),
(1)求角A的大;
(2)若a=2 ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有2名男生、3名女生,在下列不同條件下,求不同的排列方法總數(shù).

(1)全體站成一排,甲不站排頭也不站排尾;

(2)全體站成一排,女生必須站在一起;

(3)全體站成一排,男生互不相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且 acosC=(2b﹣ c)cosA.
(1)求角A的大。
(2)求cos( ﹣B)﹣2sin2 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別為F1(-,0)F2(,0),且橢圓過(guò)點(diǎn)

(1)求橢圓方程;

(2)過(guò)點(diǎn)作不與y軸垂直的直線l交該橢圓于M,N兩點(diǎn),A為橢圓的左頂點(diǎn),證明

查看答案和解析>>

同步練習(xí)冊(cè)答案