【題目】已知函數(shù)
(1)求函數(shù)f(x)在 上的最大值與最小值;
(2)已知 ,x0∈( ),求cos4x0的值.

【答案】
(1)解:函數(shù)

化簡可得:3 + sin2x﹣

= cos2x× + × sin2x+ sin2x﹣ cos2x

= sin2x﹣cos2x+

=2sin(2x﹣ )+

∵x∈ 上,

∴2x﹣ ∈[- , ].

∴sin(2x﹣ )∈[ ,1].

函數(shù)f(x)在 上的最大值為 ,最小值為


(2)解:∵ ,即2sin(4x0 )+ =

sin(4x0 )=

∵x0∈( , ),

4x0 ∈[ ,π],

∴cos(4x0 )=

cos4x0=cos[4x0 )+ ]=cos(4x0 )cos ﹣sin(4x0 )sin = × =


【解析】(1)利用二倍角和輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的取值最大和最小值;(2)利用 ,x0∈( , ),代入化簡,找出與cos4x0的值關(guān)系,可求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)的離心率為 ,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線 相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P(4,0),M,N是橢圓C上關(guān)于x軸對稱的任意兩個不同的點(diǎn),連接PN交橢圓C于另一點(diǎn)E,求直線PN的斜率的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,證明直線ME與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動點(diǎn)P滿足 + =2
(1)求動點(diǎn)P的軌跡F1 , F2的方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為 ,求△OAB面 積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ), =(﹣1,0).
(1)求向量 的長度的最大值;
(2)設(shè)α= ,且 ⊥( ),求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某離散型隨機(jī)變量X服從的分布列如圖,則隨機(jī)變量X的方差D(X)等于

X

0

1

p

m

2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直三棱柱中,平面側(cè)面,且

1)求證:;

2)若直線與平面所成角的正弦值為,求銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計(jì)

30歲及以下

70

30

100

30歲以上

60

40

100

合計(jì)

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機(jī)選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+x2﹣xlna(a>0,a≠1).
(Ⅰ)當(dāng)a>1時,求證:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(Ⅱ)若函數(shù)y=|f(x)﹣t|﹣1有三個零點(diǎn),求t的值;
(Ⅲ)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的不等式:(ax﹣1)(x﹣1)>0.

查看答案和解析>>

同步練習(xí)冊答案