【題目】已知拋物線與直線相交于A、B兩點(diǎn).
(1)求證:;
(2)當(dāng)的面積等于時(shí),求k的值.
【答案】解: (1) 當(dāng)k = 0時(shí)直線與拋物線僅一個(gè)交點(diǎn), 不合題意, ………… 2分
∴k 0由y =" k" (x+1)得x =–1 代入y 2=" –" x 整理得: y 2+y – 1 =" 0" , 2分
設(shè)A (x 1, y 1), B (x 2, y 2) 則y 1+ y 2= –, y 1y 2=" –1." ………… 2分
∵A、B在y 2=" –" x上, ∴A (–, y 1), B (–, y 2) ,
∴ kOA·kOB===" –" 1 .
∴ OA^OB. …………… 3 分
(2) 設(shè)直線與x軸交于E, 則 E ( – 1 , 0 ) ∴|OE| =" 1" ,
【解析】
試題(1)可假設(shè),分別代入拋物線方程與直線方程,化簡(jiǎn)整理可得,,利用向量垂直有,即證明;(2)直線與軸的交點(diǎn)為的坐標(biāo)為,則可將三角形拆為兩個(gè)三角形,兩三角形具有相同的底邊,高分別為的縱坐標(biāo),利用(1)中的關(guān)系便可求得的面積函數(shù),根據(jù)函數(shù)值求的值.
試題解析:(1)證明:聯(lián)立,消去x,得ky2+y-k=0.設(shè)A(x1,y1),B(x2,y2),則y1+y2=-,y1·y2=-1.因?yàn)?/span>y12=-x1,y22=-x2,所以(y1·y2)2=x1·x2,所以x1·x2=1,所以x1x2+y1y2=0,即=0,所以OA⊥OB.
(2)設(shè)直線l與x軸的交點(diǎn)為N,則N的坐標(biāo)為(-1,0),
所以S△AOB=|ON|·|y1-y2|
=×|ON|×
=×1×=,
解得k2=,所以k=±.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果是( )
A.e2016﹣e2015
B.e2017﹣e2016
C.e2015﹣1
D.e2016﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:等比數(shù)列{}中,公比為q,且a1=2,a4=54,等差數(shù)列{}中,公差為d,b1=2,b1+b2+b3+b4=a1+ a2+ a3.
(I)求數(shù)列{}的通項(xiàng)公式;
(II)求數(shù)列{}的前n項(xiàng)和的公式;
(III)設(shè),,其中n=1,2,…,試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某市民眾對(duì)某項(xiàng)公共政策的態(tài)度,在該市隨機(jī)抽取了名市民進(jìn)行調(diào)查,做出了他們的月收入(單位:百元,范圍:)的頻率分布直方圖,同時(shí)得到他們?cè)率杖肭闆r以及對(duì)該項(xiàng)政策贊成的人數(shù)統(tǒng)計(jì)表:
(1)求月收入在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖,并在圖中標(biāo)出相應(yīng)縱坐標(biāo);
(2)根據(jù)頻率分布直方圖估計(jì)這人的平均月收入;
(3)若從月收入(單位:百元)在的被調(diào)查者中隨機(jī)選取人,求人都不贊成的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)是橢圓的左焦點(diǎn),點(diǎn)是軸上的一點(diǎn),點(diǎn)為橢圓的左、右頂點(diǎn),已知,且
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作直線交橢圓于兩點(diǎn),試判定直線的斜率之和是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知C= ,向量 =(sinA,1), =(1,cosB),且 .
(1)求A的值;
(2)若點(diǎn)D在邊BC上,且3 = , = ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an , 求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)cn= ,數(shù)列{cn}的前n項(xiàng)和為Tn= .求n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有一塊矩形空地ABCD,AB=2km,BC=4km,根據(jù)周邊環(huán)境及地形實(shí)際,當(dāng)?shù)卣?guī)劃在該空地內(nèi)建一個(gè)箏形商業(yè)區(qū)AEFG,箏形的頂點(diǎn)A,E,F(xiàn),G為商業(yè)區(qū)的四個(gè)入口,其中入口F在邊BC上(不包含頂點(diǎn)),入口E,G分別在邊AB,AD上,且滿足點(diǎn)A,F(xiàn)恰好關(guān)于直線EG對(duì)稱,矩形內(nèi)箏形外的區(qū)域均為綠化區(qū).
(1)請(qǐng)確定入口F的選址范圍;
(2)設(shè)商業(yè)區(qū)的面積為S1 , 綠化區(qū)的面積為S2 , 商業(yè)區(qū)的環(huán)境舒適度指數(shù)為 ,則入口F如何選址可使得該商業(yè)區(qū)的環(huán)境舒適度指數(shù)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com