已知函數(shù)處取得極小值2.

(1)求函數(shù)的解析式;

(2)求函數(shù)的極值;

(3)設(shè)函數(shù),若對(duì)于任意,總存在,使得,求實(shí)數(shù)的取值范圍.

 

【答案】

(1)

(2)當(dāng)時(shí),函數(shù)有極小值-2;當(dāng)時(shí),函數(shù)有極大值2

(3)

【解析】

試題分析:(1)∵函數(shù)處取得極小值2,

,                                                                     ……1分

,

      

由②式得m=0或n=1,但m=0顯然不合題意,

,代入①式得m=4   

                                                                      ……2分

經(jīng)檢驗(yàn),當(dāng)時(shí),函數(shù)處取得極小值2,                         ……3分

∴函數(shù)的解析式為.                                              ……4分

(2)∵函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041717024057037901/SYS201304171703556953608701_DA.files/image013.png">且由(1)有,

,解得: ,                                                      ……5分

∴當(dāng)x變化時(shí),的變化情況如下表:                                        ……7分

x

-1

1

0

+

0

極小值-2

極大值2

∴當(dāng)時(shí),函數(shù)有極小值-2;當(dāng)時(shí),函數(shù)有極大值2,               ……8分

(3)依題意只需即可.

∵函數(shù)時(shí),;在時(shí),,

∴ 由(2)知函數(shù)的大致圖象如圖所示:

∴當(dāng)時(shí),函數(shù)有最小值-2,                                               ……9分

又對(duì)任意,總存在,使得,

∴當(dāng)時(shí),的最小值不大于-2,                                         ……10分

      

①當(dāng)時(shí),的最小值為,

;                                                         ……11分

②當(dāng)時(shí),的最小值為

;                                                           ……12分

③當(dāng)時(shí),的最小值為

又∵

∴此時(shí)a不存在,                                                                  ……13分

綜上所述,a的取值范圍是.                                       ……14分

考點(diǎn):本小題主要考查導(dǎo)數(shù)的性質(zhì)及其應(yīng)用.

點(diǎn)評(píng):導(dǎo)數(shù)是研究函數(shù)性質(zhì)(尤其是單調(diào)性、極值、最值等)的有力工具,要靈活應(yīng)用.求函數(shù)的極值時(shí),要先求導(dǎo)數(shù)再求極值點(diǎn),這是最好列出表格,清楚直觀,求函數(shù)的最值時(shí),一般要涉及到分類討論,分類討論時(shí)要做到分類標(biāo)準(zhǔn)不重不漏.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 已知函數(shù)處取得極小值

(1)求;

(2)若對(duì)恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省合肥市高三第一次教學(xué)質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)處取得極小值

1若函數(shù)的極小值是,求;

2函數(shù)的極小值不小于,問:是否存在實(shí)數(shù),使得函數(shù)上單調(diào)遞減?若存在,求出的范圍;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省高三最后一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)處取得極小值.

(1)求的值;

(2)若處的切線方程為,求證:當(dāng)時(shí),曲線不可能在直線的下方.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)處取得極小值.

(Ⅰ)若函數(shù)的極小值是,求;

(Ⅱ)若函數(shù)的極小值不小于,問:是否存在實(shí)數(shù)k,使得函數(shù)上單調(diào)遞減.若存在,求出k的范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案