精英家教網 > 高中數學 > 題目詳情
6、已知直線a∥α,且a與α間的距離為d,a在α內的射影為a′,l為平面α內與a′平行的任一直線,則a與l之間的距離的取值范圍是( 。
分析:在圖中作出a與l之間的距離的線段,根據l與a′的距離范圍,可求a與l之間的距離的取值范圍.
解答:解:如圖,在a上任取一點P作PO⊥a′,
垂足為O,過O作OA⊥l,垂足為A,連接PA.
則PA⊥l,PA⊥a,故PA就是a與l之間的距離.
在Rt△POA中,PA>PO=d,
故選B.
點評:本題考查直線與平面平行的性質,點、線、面的距離,考查空間想象能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

12、下列命題中,真命題是
②③④
(將真命題前面的編號填寫在橫線上).
①已知平面α、β和直線a、b,若α∩β=a,b?α且a⊥b,則α⊥β.
②已知平面α、β和兩異面直線a、b,若a?α,b?β且a∥β,b∥α,則α∥β.
③已知平面α、β、γ和直線l,若α⊥γ,β⊥γ且α∩β=l,則l⊥γ.
④已知平面α、β和直線a,若α⊥β且a⊥β,則a?α或a∥α.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,已知直線a∥b,且a與b之間的距離為4,點A到直線a的距離為2,點B到直線b的距離為3,AB=2
30
.試在直線a上找一點M,在直線b上找一點N,滿足MN⊥a且AM+MN+NB的長度和最短,則此時AM+NB=( 。
A、6B、8C、10D、12

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線a、b,平面α、β、γ,給出下列條件:

①α⊥γ,β⊥γ;

②α內不共線的三點到β的距離相等;

③aα,bα,a∥β,b∥β;

④a、b是異面直線且aα,bβ,a∥β,b∥α.

以上四個條件中,能推出α∥β的是(    )

A.④                                    B.②③

C.②                                    D.①③

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線a及平面α,且a不在α內,如果直線a上有兩點到平面α的距離相等,則a與α的關系是(    )

A.平行         B.相交                 C.平行或相交       D.垂直

查看答案和解析>>

科目:高中數學 來源:2009-2010學年廣東省云浮市羅定中學高三(下)5月月考數學試卷(理科)(解析版) 題型:解答題

下列命題中,真命題是    (將真命題前面的編號填寫在橫線上).
①已知平面α、β和直線a、b,若α∩β=a,b?α且a⊥b,則α⊥β.
②已知平面α、β和兩異面直線a、b,若a?α,b?β且a∥β,b∥α,則α∥β.
③已知平面α、β、γ和直線l,若α⊥γ,β⊥γ且α∩β=l,則l⊥γ.
④已知平面α、β和直線a,若α⊥β且a⊥β,則a?α或a∥α.

查看答案和解析>>

同步練習冊答案