為使方程cos2x-sinx+a=0在(0,
π
2
]
內(nèi)有解,則a的取值范圍是(  )
A.-1≤a≤1B.-1<a≤1C.-1≤a<0D.a≤-
5
4
由題意,方程可變?yōu)閍=-cos2x+sinx
 令t=sinx,由0<x≤
π
2
得t=sinx∈(0,1]
 即a=t2+t-1,t∈(0,1]
解得a∈(-1,1]
故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為使方程cos2x-sinx+a=0在(0,
π
2
]
內(nèi)有解,則a的取值范圍是( 。
A、-1≤a≤1
B、-1<a≤1
C、-1≤a<0
D、a≤-
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為使方程cos2x-sinx+a=0在(0,
π2
]內(nèi)有解,則a
的取值范圍是
-1<a≤1
-1<a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為使方程cos2x-sinx+a=0在0<x≤內(nèi)有解,則a的取值范圍是(    )

A.-1≤a≤1           B.-1<a≤1          C.-1≤a<0           D.a≤-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年北京市懷柔區(qū)高中結(jié)業(yè)考試數(shù)學(xué)試卷(必修4)(解析版) 題型:選擇題

為使方程cos2x-sinx+a=0在內(nèi)有解,則a的取值范圍是( )
A.-1≤a≤1
B.-1<a≤1
C.-1≤a<0
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案