【題目】已知函數(shù),集合.
(1)若集合中有且僅有個(gè)整數(shù),求實(shí)數(shù)的取值范圍;
(2)集合,若存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)將函數(shù)解析式變形為,根據(jù)對(duì)稱(chēng)性可知集合中的個(gè)整數(shù)只能是、、,然后對(duì)與的大小進(jìn)行分類(lèi)討論,結(jié)合題意可得出實(shí)數(shù)的取值范圍;
(2)對(duì)與的大小進(jìn)行分類(lèi)討論,結(jié)合可得出所滿(mǎn)足的不等式,結(jié)合的取值范圍,可求得實(shí)數(shù)的取值范圍.
(1).
因?yàn)榧?/span>中有且僅有個(gè)整數(shù),則,即.
①若,即當(dāng)時(shí),,
由于與的平均數(shù)為,則,則中的個(gè)整數(shù)只可能是、、,;
②,即當(dāng)時(shí),,
由于與的平均數(shù)為,則,則中的個(gè)整數(shù)只可能是、、,.
綜上所述,實(shí)數(shù)的取值范圍是;
(2)①若,即時(shí),則,,
,則,得;
②當(dāng)時(shí),即當(dāng)時(shí),,
則,
,則,得,
,可得,,
,,此時(shí);
③若,即當(dāng)時(shí),,
則,
,則,得,
所以,則,解得,此時(shí),
,,此時(shí).
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)有極小值,求該極小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),再將所得的圖象向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象.
(1)寫(xiě)出函數(shù)的解析式;
(2)若對(duì)任意 , 恒成立,求實(shí)數(shù)的取值范圍;
(3)求實(shí)數(shù)和正整數(shù),使得在上恰有個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D﹣ABC,如圖2所示.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求幾何體D﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】廠(chǎng)家在產(chǎn)品出廠(chǎng)前,需對(duì)產(chǎn)品做檢驗(yàn),廠(chǎng)家將一批產(chǎn)品發(fā)給商家時(shí),商家按合同規(guī)定也需隨機(jī)抽取一定數(shù)量的產(chǎn)品做檢驗(yàn),以決定是否接收這批產(chǎn)品.
(1)若廠(chǎng)家?guī)旆恐校ㄒ暈閿?shù)量足夠多)的每件產(chǎn)品合格的概率為 從中任意取出 3件進(jìn)行檢驗(yàn),求至少有 件是合格品的概率;
(2)若廠(chǎng)家發(fā)給商家 件產(chǎn)品,其中有不合格,按合同規(guī)定 商家從這 件產(chǎn)品中任取件,都進(jìn)行檢驗(yàn),只有 件都合格時(shí)才接收這批產(chǎn)品,否則拒收.求該商家可能檢驗(yàn)出的不合格產(chǎn)品的件數(shù)ξ的分布列,并求該商家拒收這批產(chǎn)品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面四邊形ABCD中,E,F是AD,BD中點(diǎn),,,將沿對(duì)角線(xiàn)BD折起至,使平面平面BCD,則四面體中,下列結(jié)論不正確的是( )
A.平面
B.異面直線(xiàn)CD與所成的角為
C.異面直線(xiàn)EF與所成的角為
D.直線(xiàn)與平面BCD所成的角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷(xiāo)售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季進(jìn)了160盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷(xiāo)該產(chǎn)品的利潤(rùn).
(1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的平均數(shù)和眾數(shù);
(2)將表示為的函數(shù);
(3)以需求量的頻率作為各需求量的概率,求開(kāi)學(xué)季利潤(rùn)不少于4800元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象的一條對(duì)稱(chēng)軸為,其中為常數(shù),且,給出下述四個(gè)結(jié)論:
①函數(shù)的最小正周期為;
②將函數(shù)的圖象向左平移所得圖象關(guān)于原點(diǎn)對(duì)稱(chēng);
③函數(shù)在區(qū)間,上單調(diào)遞增;
④函數(shù)在區(qū)間上有個(gè)零點(diǎn).
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①③C.①③④D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lg(x+1).
(1)若0<f(1-2x)-f(x)<1,求實(shí)數(shù)x的取值范圍;
(2)若g(x)是以2為周期的偶函數(shù),且當(dāng)0≤x≤1時(shí),有g(x)=f(x),當(dāng)x∈[1,2]時(shí),求函數(shù)y=g(x)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com