【題目】設圓上的點A(2,3)關于直線x+2y=0的對稱點仍在圓上,且直線xy+1=0被圓截得的弦長為2,求圓的方程.

【答案】(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244.

【解析】試題分析:用待定系數(shù)法求解。設圓的方程為(xa)2(yb)2r2,根據(jù)圓心在直線上,點A(2,3)在圓上及弦長得到關于a,b,r的方程組,解方程組求得參數(shù)即可得到圓的方程。

試題解析:

設圓的方程為(xa)2(yb)2r2,

由題意,知直線x2y=0過圓心,

a2b0.

又點A在圓上,

∴(2-a)2(3b)2r2.

∵直線xy+1=0被圓截得的弦長為

()22r2.

由①②③可得

故所求圓的方程為(x6)2(y3)2=52或(x14)2(y7)2244.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】A已知直線的參數(shù)方程為為參數(shù)),在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,圓的方程為

(1)求圓的圓心的極坐標;

(2)判斷直線與圓的位置關系.

已知不等式的解集為

(1)求實數(shù)的值;

(2)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠生產某產品過程中記錄的產量(噸)與相應的生產能耗(噸標準煤)的幾組對照數(shù)據(jù):

2

4

6

8

10

4

5

7

9

10

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;

(2)根據(jù)(1)中求出的線性回歸方程,預測生產20噸該產品的生產能耗是多少噸標準煤?

附:回歸直線的斜率和截距的最小二乘估計分別為: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角三角形ABC中,a,b,c分別為角A,B,C所對的邊,且

(1)求角C的大;

(2)若 ,且三角形ABC的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程.

已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標系原點為極點,軸正半軸為極軸建立極坐標系.

1)求曲線的極坐標方程;

2)若直線的極坐標方程為,求直線被曲線截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20143月的“兩會”上,李克強總理在政府工作報告中,首次提出“倡導全民閱讀”,某學校響應政府倡導,在學生中發(fā)起讀書熱潮.現(xiàn)統(tǒng)計了從2014年下半年以來,學生每半年人均讀書量,如下表:

時間

2014年下半年

2015年上半年

2015年下半年

2016年上半年

2016年下半年

時間代號

人均讀書量(本)

根據(jù)散點圖,可以判斷出人均讀書量與時間代號具有線性相關關系.

(1)求關于的回歸方程

(2)根據(jù)所求的回歸方程,預測該校2017年上半年的人均讀書量.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,摩天輪的半徑為米,點距地面高度為米,摩天輪做勻速運動,每分鐘轉一圈,以點為原點,過點且平行與地平線的直線為軸建立平面直角坐標系,設點的起始位置在最低點(且在最低點開始時),設在時刻(分鐘)時點距地面的高度(米),則的函數(shù)關系式

__________.在摩天輪旋轉一周內,點到地面的距離不小于米的時間長度為 __________(分鐘)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓過點和點,且圓心在直線上.

(1)求圓的方程;

(2)過點作圓的切線,求切線方程.

(3)設直線,且直線被圓所截得的弦為,滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱柱的底面是邊長為的菱形,且,平面,設的中點

1求證:平面

2在線段上,且平面,求平面和平面所成銳角的余弦值.

查看答案和解析>>

同步練習冊答案